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Exercise 1 Simplification of terms and domain of definition (10 points)

Simplify the following expressions and determine the maximum possible domain (as a subset
of R) of the occurring parameters, for which the initial expression is defined.

(a)
(4a2 + 12a + 9)(

:
b)3

(2a + 3)b
(b)

:
63 · a:
147a

(c) ln

�

e2a

a

�

(d)

�

2
3

�3

�

10
9

�2 (e)

�

(1 + sin(x))2 + cos2(x) 2 1

2 sin(x) + 1

�2

Hint: Refer to the literature or https://en.wikipedia.org to recall the definition of a function
and the domain of a function. The identities sin(π 2 x) = sin(x) and sin(2π + x) = sin(x) might
be useful.

Exercise 2 Matrix multiplication (10 points)

Let A =

û

ü

ý

0 0
2 1

22 1

þ

ÿ

ø
, B =

�

23
0

�

, C =

�

0 21
1 0

�

, and D =

�

0 1 0
2 3 4

�

.

Compute:

(a) AB (b) DB (c) AD (d) DA + C (e) C3 = C · C · C

Argue that (f) CDAB ;= ADA and (g) C7 ;= ADA without explicitly computing the corre-
sponding matrices.

Exercise 3 Matrices and commutativity (10 points)

(a) Construct A, B * R
3×3 such that AB ;= BA.

(b) Let A =

�

1 2
3 4

�

and B =

�

c 0
0 d

�

. Under which conditions on the parameters c, d * R

do we have AB = BA?

https://en.wikipedia.org
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Exercise 1 Vectors (10 points)

Let ~w1 = (1 2 0)T and ~w2 = (1 2 4)T . Find a vector ~v1 * R
3 \ {~0} and a vector ~v2 * R

3 \ {~0}
such that

(a) ~v1
T ~w1 = 0, and (b) ~v2

T ~w2 = 0.

(Note: ~w1, ~w2, and ~0 are elements of R3, ~0 denotes the zero vector.)

Exercise 2 (Semi-)Groups (10 points)

A set S equipped with a binary operation S × S → S, denoted by •, is a monoid1 if it satisfies
the following two axioms:

– (Associativity) For all a, b and c in S, the equation (a • b) • c = a • (b • c) holds.

– (Identity element) There exists an element e in S such that for every element a in S, the
equations e • a = a and a • e = a hold.

The set R
2×2 together with matrix multiplication is a monoid G.

(a) Which matrix is the identity element of G? Is it unique?

(b) Determine the center2

Z(G) :=
{

z * R
2×2 | zg = gz ∀g * R

2×2
}

of G.

Exercise 3 More about matrices (10 points)

(a) Let A * R
m×n. Prove that AT A and AAT are symmetric.

(b) Find matrices A, B, C with tr(ABC) ;= tr(ACB) such that both ABC and ACB exist.

1See https://en.wikipedia.org/wiki/Monoid if you want to know more.
2See https://en.wikipedia.org/wiki/Center_(group_theory) if you want to know more.

https://en.wikipedia.org/wiki/Monoid
https://en.wikipedia.org/wiki/Center_(group_theory)
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Exercise 1 Investment model (10 points)

A state model is given by

~y = A~x , with A = (aij) =

û

ü

ý

1 4
2 2
3 0

þ

ÿ

ø
.

An agent can decide to invest in two possible assets. Due to uncertainty one of three scenarios
can arise, so different states yield different returns of the asset. The value aij describes the
payoff of the asset j in the case that state i occurs. The vector ~x = ( x1

x2
) is called portfolio and

allocates the investment to the assets, hence we have x1 + x2 = 1.

(a) A portfolio is called riskless if it provides the same return in every state. Is there a riskless
portfolio?

(b) A portfolio is called duplicable if there is a different portfolio with exactly the same return
vector. Is there a duplicable portfolio?

Exercise 2 True or False (10 points)

Let A * R
n×n and ~b * R

n, n * N. Are the following statements true or false?

– If A | ~b is in reduced row echelon form, then A is an identity matrix. © True © False

– If A is a diagonal matrix, then A | ~b is in reduced row echelon form. © True © False

– Any system of linear equations A~x = ~0 has at least one solution. © True © False

– If the columns of A are linearly dependent, then the system of linear
equations A~x = ~b has at least one solution.

© True © False

– If the rows of A are linearly independent, then the system of linear
equations A~x = ~b has at least one solution.

© True © False

Exercise 3 Linear Independence (10 points)

(a) Are the vectors ~a =

û

ü

ý

0
1
2

þ

ÿ

ø
, ~b =

û

ü

ý

3
0
4

þ

ÿ

ø
, and ~c =

û

ü

ý

1
0
2

þ

ÿ

ø
linearly independent?

(b) Are the vectors ~a =

û

ü

ý

0
1
0

þ

ÿ

ø
, ~b =

û

ü

ý

2
2
2

þ

ÿ

ø
, and ~c =

û

ü

ý

1
2
1

þ

ÿ

ø
linearly independent?

(c) Suppose ~a, ~b and ~c are three linearly independent vectors in R
4. Are the vectors 2~a 2~b,

6~b 2 3~c and ~c 2 4~a linearly independent? Is the assumption about linear independence
necessary to answer the previous question?
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Exercise 1 Rank (10 points)

(a) Let

B1 :=

�

4 0
0 1

�

, B2 :=

�

1 2
0 1

�

, and B3 :=

�

0 1
1 0

�

be three square matrices from R
2×2, and let A * R

2×3 be a matrix with rank 2.

Show that the rank of B1A, B2A, and B3A is still 2.

(b) Determine the rank of the matrix A =

û

ü

ü

ü

ü

ü

ý

1 2 1 1 2
0 0 3 24 21
2 4 3 1 2
4 8 2 7 7
0 0 21 1 2

þ

ÿ

ÿ

ÿ

ÿ

ÿ

ø

.

Exercise 2 Basis (10 points)

(a) Calculate a basis for the vector space span

û

ü

ü

ü

ý



















û

ü

ü

ü

ý

1
0
2
1

þ

ÿ

ÿ

ÿ

ø

,

û

ü

ü

ü

ý

3
0
0
3

þ

ÿ

ÿ

ÿ

ø

,

û

ü

ü

ü

ý

0
0
4
2

þ

ÿ

ÿ

ÿ

ø

,

û

ü

ü

ü

ý

3
0
2
3

þ

ÿ

ÿ

ÿ

ø



















þ

ÿ

ÿ

ÿ

ø

.

(b) Find a basis for the real vector space R
2×3.

(c) Find a basis for the real vector space of polynomials of degree at most 5 with coefficients
in R.

(d) Let p1, p2 : R → R be functions of the R-vector space of polynomials of degree at most 5
with p1(x) = 2x2 + 3x4, p2(x) = 5x2 + x4. Describe the set 〈p1, p2〉 := span ({p1, p2}).

Exercise 3 Inverse matrices (10 points)

Determine, if possible, the inverse of the following matrices:

(a)

û

ü

ý

1 0 3
2 1 0
1 0 1

þ

ÿ

ø
, (b)

û

ü

ü

ü

ý

1 2 4 5
0 4 4 2
1 0 1 1
1 0 2 4

þ

ÿ

ÿ

ÿ

ø

.

Exercise 4 Applications of determinants (0 points)

Read the paragraph about applications from Wikipedia’s website:

https://en.wikipedia.org/wiki/Determinant#Applications

https://en.wikipedia.org/wiki/Determinant#Applications
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Note: Unless stated otherwise you have to explain your approach to solving each exercise.
Merely giving the solution will not be awarded with full points. Explanations can take the form
of detailed in-between steps, references to the lecture, and even plain English (or German) words
– anything that another person needs to understand how you got your solution without being
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Exercise 1 Scalar product and norms (10 points)

(a) Let ~x = (1 , 2 , 3)T and ~y = (4 , 5 , 6)T . Compute 〈~x, ~y〉, 〈~y, ~x〉, ‖~x‖2, and ‖~y‖2.

(b) Verify 〈Q~x, Q~x〉 = ‖~x‖2
2 for an arbitrary orthogonal matrix Q * R

n×n and ~x * R
n.

(c) Compute the Frobenius norm of A =

û

ü

ý

1 22 1
5 2 5
2 4 22

þ

ÿ

ø
.

Exercise 2 Eigenvalues and eigenvectors (10 points)

Compute the eigenvalues of the following matrices. For each eigenvalue, find a basis of the vector
space spanned by its associated eigenvectors.

(a) A =

�

2 0.25
1 23

�

, (b) B =

û

ü

ý

2 1 0
1 2 0
0 0 3

þ

ÿ

ø
.

Exercise 3 Elementary matrices (10 points)

The elementary matrix corresponding to multiplying the i-th row by s * R \ {0} is represented
by

Ei(s) = (ekl) where















eii = s

ekk = 1 k ;= i

ekl = 0 otherwise.

(a) Show that the inverse of Ei(s) is Ei(s
−1) using the basic definition of matrix multiplication.

(b) Compute the determinant of Ei(s) using the rules for det(n) (cf. lecture).

(c) Let A * R
m×n be an arbitrary matrix. Show that multiplying the i-th row of A by s and

is equivalent to computing the matrix product Ei(s) · A.

(d) Show that
det(Ei(s) · B) = det(Ei(s)) · det(B)

for an arbitrary square matrix B.
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Note: Unless stated otherwise you have to explain your approach to solving each exercise. Merely giving the

solution will not be awarded with full points. Explanations can take the form of detailed in-between steps,

references to the lecture, and even plain English (or German) words – anything that another person needs to

understand how you got your solution without being able to talk to you.

Exercise 1 Determinants (10 points)

Compute the determinant of

(a) A =

û

ü

ü

ü

ý

1 0 2 0
3 1 0 0
5 0 0 3
7 0 4 0

þ

ÿ

ÿ

ÿ

ø

and (b) B =

û

ü

ü

ü

ý

2 21 5 1
3 21 5 1
2 21 7 1
2 21 5 11

þ

ÿ

ÿ

ÿ

ø

.

Exercise 2 Geometric meaning of eigenvectors (10 points)

The matrix

A =

û

ü

ý

0 21 0
1 0 0
0 0 1

þ

ÿ

ø

defines a rotation around the z-axis by 90 degrees in three-dimensional space.

(a) Give an example that illustrates this fact, i.e., find a vector that is easy to rotate geomet-
rically, and then check to see if multiplying the matrix leads to the same result.

(b) Find an eigenvector of A and the corresponding eigenvalue.

Hint: Think about the properties of an eigenvector; in this particular case it is possible to
find one without computing anything. (Though you have to explain your approach.)

Exercise 3 Eigenvectors (10 points)

Let A =

û

ü

ý

a 1 p
b 2 q
c 21 r

þ

ÿ

ø
. Assume that A has eigenvectors

û

ü

ý

1
1
0

þ

ÿ

ø
,

û

ü

ý

21
0
2

þ

ÿ

ø
,

û

ü

ý

0
1

21

þ

ÿ

ø
.

Compute the eigenvalues of A.
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Note: Unless stated otherwise you have to explain your approach to solving each exercise. Merely giving the

solution will not be awarded with full points. Explanations can take the form of detailed in-between steps,

references to the lecture, and even plain English (or German) words – anything that another person needs to

understand how you got your solution without being able to talk to you.

Exercise 1 Diagonalization of matrices (10 points)

Consider the following matrices:

A1 =

û

ü

ý

21 2 0
2 2 0
0 0 1

þ

ÿ

ø
, A2 =

û

ü

ý

4 5 22
22 22 1
21 21 1

þ

ÿ

ø
, A3 =

û

ü

ý

1 0 22
0 0 0

22 0 4

þ

ÿ

ø
.

If possible, compute a diagonalization for each matrix, i.e., find matrices Pk and Dk, such that
P −1

k AkPk = Dk for k = 1, 2, 3.

Exercise 2 Comprehension questions (5 points)

Let A * R
n×n be an arbitrary square matrix. Answer the following items. (Always give reasons

for your answer.)

(a) True or false: The eigenvalues of A never coincide with the eigenvalues of the matrix 2A?

(b) Is any multiple of an eigenvector of A also an eigenvector?

(c) Is any sum of eigenvectors of A also an eigenvector?

(d) Suppose A is singular. What does this imply for its eigenvalues?

(e) Suppose A * R
n×n has the eigenvalue λ. What does this imply for the eigenvalues of A2?

Exercise 3 Eigenvalues of invertible matrices (5 points)

Prove the following statement:

A square matrix A is invertible iff it does not have an eigenvalue equal to zero.

Exercise 4 Definiteness (10 points)

Are the following matrices positive definite, positive semidefinite, negative definite, negative
semidefinite, or indefinite?

(a)

û

ü

ý

1 0 0
0 0 0
0 0 4

þ

ÿ

ø
, (b)

û

ü

ý

2 1 0
1 2 0
0 0 3

þ

ÿ

ø
, (c)

û

ü

ý

0 0 22
0 0 0

22 0 0

þ

ÿ

ø
, (d)

�

21
�

, and (e)

�

22 5
4 210

�
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Note: Unless stated otherwise you have to explain your approach to solving each exercise. Merely giving the

solution will not be awarded with full points. Explanations can take the form of detailed in-between steps,

references to the lecture, and even plain English (or German) words – anything that another person needs to

understand how you got your solution without being able to talk to you.

Exercise 1 A model of employment (10 points)

Consider the following model of employment: If an individual is not employed in a given week,
in the next week he or she may either find a job or remain unemployed. With probability
0 < q < 1 the individual will remain unemployed, and therefore with probability q := 1 2 q he
or she will find a job. Similarly, if an individual is employed in a given week, let 0 < p < 1 be
the probability that he or she will remain employed and p := 1 2 p the probability of becoming
unemployed.

Given the numbers of employed individuals xt and unemployed individuals yt in period t the
corresponding numbers for the next period are given by:

�

xt+1

yt+1

�

= A

�

xt

yt

�

(∗)

(a) Determine A such that (∗) represents the model of employment described above.

(b) Compute a diagonalization of A.

(c) Assume that p = 2/3 and q = 1/3. Compute the long term distribution of employed and
unemployed individuals, i.e., compute limn→∞ An.

Hint: Use the result from the supplement to powers of diagonal matrices and the fact
there are matrices P and D, such that AP = PD.

Exercise 2 Stochastic matrices (10 points)

Let A * R
n×n be a row stochastic matrix.

(a) Show that 1 is an eigenvalue of A.

(b) Compute an eigenvector corresponding to the eigenvalue 1.

Exercise 3 Convergence of sequences (10 points)

Do the following sequences converge for n → ∞, n * N? Find the limit of each convergent
sequence.

(a) an =

√

3n3 + 2n2 + n

4n2 + 2
, (b) bn =

8n + 4

π 2 9n
+

(

4

5

)n

, (c) cn =
(21)n

21

1

n

https://elearning.uni-bayreuth.de/pluginfile.php/1845395/mod_resource/content/1/supplement_03.pdf
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Note: Unless stated otherwise you have to explain your approach to solving each exercise. Merely giving the

solution will not be awarded with full points. Explanations can take the form of detailed in-between steps,

references to the lecture, and even plain English (or German) words – anything that another person needs to

understand how you got your solution without being able to talk to you.

Exercise 1 Sequences (10 points)

Let the sequence (Xn)n∈N be recursively defined by

X0 = 1,

Xn+1 =
Xn + 2/Xn

2
,

i.e., the next term of the sequence is given as a function of its predecessor; the values of the
sequence are rational numbers.

(a) Compute Xn such that Xn−1 and Xn do not differ in the first 9 decimal places. (Use a
calculator or similar tool.)

(b) Compute the limit X of the sequence by setting Xn+1 = Xn. (To be able to do this we
need to assume that the limit exists.)

(c) Show that the limit found in part (b) is not a rational number (even though every element
of the sequence is). Start by assuming that the limit X is a rational number, i.e., X = p/q
where p, q * N are coprime.

Exercise 2 Cauchy sequences (10 points)

The sequence (Xn) is defined by Xn :=
∑n

k=0 1/(k!), where 0! = 1 and k! =
∏k

i=1 i for k ≥ 1.

Show that (Xn)n∈N is a Cauchy sequence for the distance function

d : R × R → R≥0, (x, y) 7→ |x 2 y|.

Hint: You can use either
∑n

k=0

�

1
2

�k
≤ 2 or

∑n
k=1

1
k(k+1) = 1 2 1

n+1 .

Exercise 3 Continuity (10 points)

Use definition 39 from the lecture to find out whether the following functions are continuous:

(a) f : R → R, f(x) :=

{

(

x
100

)2 · x for x ≤ 10

0.01 · x otherwise

(b) g : R≥0 → R, g(x) =















0 for 0 ≤ x ≤ 1,

ln(
:

x) for 1 < x < e2,

sin(x 2 e2) for x ≥ e2
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Exercise 1 Accumulation points (10 points)

Find the accumulation points of the sequence an := (1 + 1
n

)(21)n.

Exercise 2 Sets (10 points)

(a) Let In := (1 2 1/n, 1 + 1/n). Is the interval In open for each n * N>0? Determine the set
C :=

⋂

n∈N>0

In. Is it open?

(b) Determine the set of boundary points of {(x, y) * R
2 | x2 + y2 < 4}.

(c) Draw the closed unit-balls around (0, 0) for ‖·‖2, ‖·‖∞, and ‖·‖1.

Hint: Unit-balls have a radius of 1, that is, it is equal to the set {~x * R
2 | ‖~x‖ ≤ 1}.

(d) Give an example of a set in R
2 which is neither open nor closed.

Exercise 3 Infimum and supremum (10 points)

Determine the infimum and the supremum of the set { x * R | 1 < x2 < 2 }.

Exercise 4 Convergent and Cauchy sequences (10 points)

(a) Show that every convergent sequence in a metric space (M, d) is a Cauchy sequence.

(b) Show that (xn) =
n
∑

k=1

1

k2
is a convergent sequence.

(Hint: Don’t bother figuring out what the limit point is.)



apl. Prof. Dr. Sascha Kurz
Dipl. Math. Tobias Kreisel

Mathematics in Economy
Summer Semester 2022

Intermediate Mathematics for Business and Economics

Homework Assignment 11

Submission deadline: 14:15 on 13.07.2022

Note: Unless stated otherwise you have to explain your approach to solving each exercise. Merely giving the

solution will not be awarded with full points. Explanations can take the form of detailed in-between steps,

references to the lecture, and even plain English (or German) words – anything that another person needs to
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Exercise 1 Surjectivity, injectivity, bijectivity (10 points)

(a) Find the composition f ◦ g and simplify.

• f : R>0 → R, x 7→ x2 · ln(x) and g : R → R>0, x 7→ e−x,

• f : R4 → R
3, ~x 7→

û

ü

ý

1 2 4 3
3 4 2 0
0 0 2 0

þ

ÿ

ø
· ~x and g : R2 → R

4, ~x 7→

û

ü

ü

ü

ý

1 0
1 0
0 1
1 0

þ

ÿ

ÿ

ÿ

ø

· ~x.

(b) Are the following functions surjective? Are they injective? Explain.

• f1 : [ 0, 1 ] → [ 0, 1 ], x 7→ x2

• f2 : R>0 → R, x 7→ x2

• f3 : R → R≥0, x 7→ x2

• f4 : N → N, n 7→ 2n + 1

(c) Determine a non-empty set U ⊆ R such that the restriction f3|U is bijective.

Exercise 2 Derivatives (10 points)

Compute the derivative for each of the following functions for all elements of the domain where
the derivative exists.

(a) f : R → R, x 7→ |x3 2 1|

(b) g : R → R, x 7→ |x| · x

(c) h : R → R, x 7→ esin(x2)

Exercise 3 Total differentiability (10 points)

Consider the function

f : R2 → R, (x, y)T 7→ f(x, y) =











(x2 + y2) sin

(

1:
x2+y2

)

if (x, y) ;= (0, 0),

0 otherwise.

(a) Compute the Jacobian of f .

(b) Show that f is totally differentiable at (0, 0).

(c) Compute the derivatives of f along the directions

�

1
0

�

,

�

1
21

�

.
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Note: Unless stated otherwise you have to explain your approach to solving each exercise. Merely giving the
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Exercise 1 Inverse mapping (10 points)

Find the inverse g−1 of the mapping g : R2 → R
2,

�

x
y

�

7→
�

2x 2 y
y 2 4x

�

.

Exercise 2 Taylor polynomials (10 points)

(a) Compute the 6th order Taylor polynomial at x0 = 0 for the functions exp(x), sin(x), and
cos(x).

(b) Compute the 2nd order Taylor polynomial at ~x0 = (21, 0.5) for f : R2 → R, f(x, y) =
0.5y · (x 2 x2 + 2y) 2 0.75x.

Exercise 3 Chain rule in higher dimensions (10 points)

Determine the Jacobi matrix of the function

g(x, y) =

�

ln(x + y) + cos
(

x2 + y2
)

ln
(

x2 + y2
)

+ cos(x + y)

�

(x, y * R>0) using the multidimensional chain rule and extract the partial derivatives.

Exercise 4 Total differentiability (10 points)

Consider the function

f : R2 → R, ~x = (x, y)T 7→ f(x, y) =

{

xy2/(x2 + y4) if x ;= 0,

0 otherwise.

(a) Check whether f is continuous.

(b) Check whether f is totally differentiable at (0, 0).
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Exercise 1 Global extrema I

Determine the global extrema of the function f : [21, 1]2 → R, f(x, y) = x2 2y2 +2xy +2x+4y.

Exercise 2 Global extrema II

Determine the gradient of the function f : R2 → R, f(x, y) = x424x2y2+y4. Identify stationary
points and check for global extrema of f .

Exercise 3 Global extrema III

Let U := [21, 0.5] ∪ [1, 3] be a subset of R. Determine the global extrema of the function
f : U → R, x 7→ x2 2 10 · max{x, 2}.

Exercise 4 Convex and concave functions

Check whether the following functions are convex or concave:

(a) f1 : R → R, x 7→ (x 2 2)2;

(b) f2 : [0, 2] → R, x 7→ 2;

(c) f3 : R3 → R, x 7→ |x|2;

(d) f4 : R2 → R, ~x 7→ ~xT

�

21 0
0 22

�

~x.



Intermediate Mathematics for Business and

Economics

Sascha Kurz

July 22, 2022



Contents

1 Linear Algebra 3

1.1 Basic Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.1 Matrix Operations . . . . . . . . . . . . . . . . . . . . . 4

1.1.2 Special Matrices . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Linear equation systems . . . . . . . . . . . . . . . . . . . . . . 7

1.2.1 Vector spaces . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 Inverse matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 Multilinear maps . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.5 Eigenvalues and -vectors . . . . . . . . . . . . . . . . . . . . . . 14

1.6 Diagonalization . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.7 Subspaces attached to a matrix . . . . . . . . . . . . . . . . . . 17

1.8 Quadratic forms . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.9 Miscellaneous . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 Calculus 21

2.1 Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Classification of sets . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 Extreme values . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Differentiable functions . . . . . . . . . . . . . . . . . . . . . . 25

3 Unconstrained optimisation 31

3.1 Global optima – convex and concave optimisation . . . . . . . 33

4 Constrained optimisation 35

4.1 Necessary conditions . . . . . . . . . . . . . . . . . . . . . . . . 35

5 Ordinary differential equations 40

1



Notation

A ∈ R
m×n matrix, plural: matrices

(aij) i=1...m
j=1...n

alternative way to denote a matrix

~v ∈ R
n column vector

∧ logical “and”

∨ logical “or”

⇐⇒ “is equivalent to”

=⇒ , 6=⇒ “implies”, “does not imply”

iff “if and only if”, see ⇐⇒ ,

:= “is defined as”

±,∓ “plus/minus”, “minus/plus”

In×n ∈ R
n×n identity matrix

0m×n ∈ R
m×n null matrix

7→ “maps to”

# “number of” or “cardinality of”

∃ “exists”

∃! “exists exactly one”

|S| cardinality of the set S

|a| absolute value of a real number a ∈ R

‖~v‖ (Euclidean) norm of a vector ~v ∈ R
n

span(S) (linear) span of a set of vectors S

〈S〉 alternative notation for the (linear) span of a set of vectors S



Chapter 1

Linear Algebra

Application 1. Assemblies A1, A2 are manufactured from components C1,

C2, C3, C4. Finally, A1, A2 are put together into products P1, P2, P3.

Compostition tables (matrix, matrices)

A1 A2

C1 2 1

C2 0 3

C3 1 1

C4 1 2
︸ ︷︷ ︸

MC→A

P1 P2 P3

A1 4 3 1

A2 2 2 2
︸ ︷︷ ︸

MA→P

Demand table (vector)
P1 10

P2 20

P3 10
︸ ︷︷ ︸

D

Production table assemblies

MA→P · D =
A1 4 · 10 + 3 · 20 + 1 · 10

A2 2 · 10 + 2 · 20 + 2 · 10
=

A1 110

A2 80
︸ ︷︷ ︸

PA

Order table components

MC→A · PA =

C1 2 · 110 + 1 · 80

C2 0 · 110 + 3 · 80

C3 1 · 110 + 1 · 80

C4 1 · 110 + 2 · 80

=

C1 300

C2 240

C3 190

C4 270
︸ ︷︷ ︸

PC
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Manager’s view MC→P?

MC→A ·MA→P =

P1 P2 P3

C1 2 · 4 + 1 · 2 2 · 3 + 1 · 2 2 · 1 + 1 · 2
C2 0 · 4 + 3 · 2 0 · 3 + 3 · 2 0 · 1 + 3 · 2
C3 1 · 4 + 1 · 2 1 · 3 + 1 · 2 1 · 1 + 1 · 2
C4 1 · 4 + 2 · 2 1 · 3 + 2 · 2 1 · 1 + 2 · 2

=

P1 P2 P3

C1 10 8 4

C2 6 6 6

C3 6 5 3

C4 8 7 5

MC→P · D = PC holds.

1.1 Basic Concepts

Definition 1. A rectangular array of numbers A ∈ R
m×n, where m, n ∈ N>0,

is called a matrix:

A =








a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...

am1 am2 · · · amn








The real numbers aij ∈ R ∀ 1 ≤ i ≤ m, 1 ≤ j ≤ n are called elements (or

entries) of A.

For 1 ≤ i ≤ m the elements ai1, ai2, . . . , ain are called the ith row of A. For

1 ≤ j ≤ n the elements a1j, a2j, . . . , amj are called the jth column of A.

By convention, uppercase letters denote matrices, lowercase letters their el-

ements. As an abbreviation we will write A = (aij) i=1...m
j=1...n

or even A = (aij)

whenever m, n are clear from the context.

Matrices consisting of only one column are called (column) vectors:

~v ∈ R
m×1 = R

m :






v1...

vm




 , with vi ∈ R ∀1 ≤ i ≤ m.

1.1.1 Matrix Operations

1. Order:

Two matrices A ∈ R
m1×n1 , B ∈ R

m2×n2 have the same order iff m1 =

m2 ∧ n1 = n2.

2. Equality:

Two matrices are equal iff they have the same order and corresponding
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elements are equal. For A = (aij) ∈ R
m1×n1 , B = (bij) ∈ R

m2×n2 we

have

A = B ⇐⇒ m1 = m2 ∧ n1 = n2 ∧ (aij = bij ∀ 1 ≤ i ≤ m, 1 ≤ j ≤ n).

3. Sum and difference:

Let A = (aij) ∈ R
m×n, B = (bij) ∈ R

m×n, then

A± B := (aij ± bij).

Example:

A =

(
2 5 7

8 9 1

)

, B =

(−1 6 4

5 2 0

)

 A + B =

(
1 11 11

13 11 1

)

, A− B =

(
3 −1 3

3 7 1

)

4. Scalar multiplication:

Let λ ∈ R, A = (aij) ∈ R
m×n. Then

λ · A = λA := (λ · aij) = (aij · λ) = A · λ.

Note: Scalar multiplication is commutative.

Example:

A =

(
2 3

7 8

)

 5A =

(
10 15

35 40

)

5. Matrix multiplication:

Let A = (aij) ∈ R
m×n, B = (bij) =∈ R

k×p. If n = k then

A · B = AB := C = (cij) ∈ R
m×p with cij =

n

∑
l=1

ailbl j

= ai1 · b1j + · · ·+ ain · bnj.

If n 6= k, the matrix product does not exist!

Example:

A =

(
2 1

−1 0

)

, B =

(
3 4

0 5

)

 AB =

(
6 13

−3 −4

)

6= BA =

(
2 ∗
∗ ∗

)

Note: Matrix multiplication is not commutative.

The stars ∗ denote irrelevant
(possibly different) real
numbers.

6. Trace of a matrix:German: „Spur“

Suppose A ∈ R
n×n, i.e. A is a square matrix. tr(A) := ∑

n
i=1 aii, i.e. the

trace of a matrix is the sum of its main diagonal elements.

Important properties: Given matrices A, B, C the equalities
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tr(AB) = tr(BA)

tr(ABC) = tr(CAB) = tr(BCA)

hold (assuming all matrix products exist). ABC, CAB and BCA are

cyclic permutations. In general tr(ABC) 6= tr(ACB).

Example:

A =





3 123 ∗
∗ 4 ∗
7 ∗ −5



 tr(A) = 3 + 4 + (−5) = 2

7. Transpose of a matrix

Let A = (aij) ∈ R
m×n, then AT = A′ := (aji) ∈ R

n×m. This effectively

swaps the rows and columns of the matrix.

Example:

A =





1 11

2 22

3 33



 AT =

(
1 2 3

11 22 33

)

Definition 2. If A = AT then A is called symmetric. Note that A necessarily

has to be square for this property to hold, i.e. A = AT =⇒ A square, but

in general A square 6=⇒ A = AT.

Rules:

(i) (AT)T = A

(ii) (A + B)T = AT + BT

(iii) (AB)T = BT AT

Proof of (iii): Let A = (aij) ∈ R
m×n, B = (bij) ∈ R

n×p. Then AB = (cij) with

cij = ∑
n
l=1 ail · bl j and (AB)T = (cji) = ∑

n
l=1 ajl · bli, BT = (bji), AT = (aji).

Finally BT · AT = (bji) · (aji) = ∑
n
l=1 bli · ajl = ∑

n
l=1 ajl · bli = (AB)T.

1.1.2 Special Matrices

Identity matrix In×n := (δij), where the Kronecker delta is defined as

δij =

{

1 if i = j

0 if i 6= j

and n ∈ N>0.

Rule: Im×m · A = A · In×n = A ∀A ∈ R
m×n, m, n ∈ N>0.Recall that 1 · a = a · 1 = a

for all a ∈ R.
Diagonal matrix D = (dij) ∈ R

m×n is a diagonal matrix iff m = n and dij = 0

∀ 1 ≤ i, j ≤ n with i 6= j.

D =








λ1 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0

0 · · · 0 λn







∈ R

n×n
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Null matrix 0m×n ∈ R
m×n

m rows







( 0 · · · 0
...

...

0 · · · 0
︸ ︷︷ ︸

n columns

)

= 0m×n

Rules: Let m, n, and k be positive integers and A ∈ R
m×n. Then

– A + 0m×n = 0m×n + A = A,

– A · 0n×k = 0m×k and 0k×m · A = 0k×n.

Upper (right) triangular matrix U ∈ R
n×n, with uij = 0 for i > j.

U =








u11 u12 · · · u1n

0 u22
. . . u2n...

. . .
. . .

...

0 · · · 0 unn








Lower (left) triangular matrix L ∈ R
n×n, with lij = 0 for i < j.

L =








l11 0 · · · 0

l21 l22
. . .

...
...

. . .
. . . 0

ln1 ln2 · · · lnn








Definition 3. Let A be a square matrix. If A · A = A, then A is called

idempotent.

Example.

A =

(
1/2 1/2

1/2 1/2

)

is idempotent.

1.2 Linear equation systems

Application 2 (Warehouse clearance). Recall that MC→P · D = PC, where

MC→P and PC are known and D is not.

Linear equation system Find ~x such that

A~x =~b,

where A ∈ R
m×n,~x ∈ R

n,~b ∈ R
m.

Example.

A =





1 0 2 1 0

0 1 1 3 0

0 0 0 0 1



 , ~b =





11

5

3





 

∣
∣
∣
∣
∣
∣

x1 + 2x3 + x4 = 11

x2 + x3 + 3x4 = 5

x5 = 3

∣
∣
∣
∣
∣
∣

⇐⇒

∣
∣
∣
∣
∣
∣

x1 = 11− 2x3 − x4

x2 = 5− x3 − 3x4

x5 = 3

∣
∣
∣
∣
∣
∣
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Adding trivial constraints we have:
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

x1 = 11 + (−2)x3 + (−1)x4

x2 = 5 + (−1)x3 + (−3)x4

x3 = 0 + 1x3 + 0x4

x4 = 0 + 0x3 + 1x4

x5 = 3 + 0x3 + 0x4

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

 ~x =










11

5

0

0

3










︸ ︷︷ ︸

=: ~s0

+










−2

−1

1

0

0










︸ ︷︷ ︸

=: ~s1

x̃3 +










−1

−3

0

1

0










︸ ︷︷ ︸

=: ~s2

x̃4

Therefore the solution space is:

L = {~s0 + λ1~s1 + λ2~s2 | λ1, λ2 ∈ R}

Linear equation systems can be manipulated by elementary row operations (or

feasible row operations), i.e. operations for which the solution space stays the

same:

– multiply an equation (a row) by λ ∈ R \ {0}

– swap two equations (rows)

– add a multiple of one equation (row) to another equation (row)

Definition 4 (row echelon form). Let A ∈ R
m×n. The first nonzero number

of a row from the left is called pivot or leading coefficient. A is in row echelon

form if

– the pivot of any row is always strictly to the right of the pivot of the

row above it,

– rows without a pivot are below those with a pivot.

Definition 5 (reduced row echelon form). A ∈ R
m×n is in reduced row echelon

form if

– it is in row echelon form,

– every leading coefficient is 1 and the only nonzero entry in its column.

Algorithm (Gauss-Jordan Elimination of A~x =~b).

Step 1: Convert

A |~b :=






a11 · · · a1n b1
...

. . .
...

...

am1 · · · amn bm






into row echelon form A′ |~b′ using elementary row operations.

Example.





1 1 1 3

1 −1 1 1

1 1 −1 1




R2 || R2−R1
↪−−−−−−→
R3 || R3−R1





1 1 1 3

0 −2 0 −2

0 0 −2 −2




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Step 2: If the last column (~b′) contains a pivot, the system has no solution.

Stop.

Step 3: Convert A′ | ~b′ into reduced echelon form using elementary row

operations.

Example.





1 1 1 3

0 −2 0 −2

0 0 −2 −2




R1 || R1+ 1

2 R3
↪−−−−−−−→

R3 || − 1
2 R3





1 1 0 2

0 −2 0 −2

0 0 1 1





R1 || R1+ 1
2 R2

↪−−−−−−−→
R2 || − 1

2 R2





1 0 0 1

0 1 0 1

0 0 1 1





Step 4: Read off the solution.

Example. L =





1

1

1



.

Definition 6 (Linear independence). n ∈ N>0 column vectors ~a1, . . . ,~an ∈
R

m are linearly independent iff A~x = ~0 has the unique solution ~x = ~0, where

A =
(
~a1 | · · · |~an

)
. Otherwise~a1, . . . ,~an are linearly dependent.

Example.

–





1

0

0



 ,





0

0

2



 ,





0

3

0



 are linearly independent.

–





1

2

0



 ,





0

3

1



 ,





2

7

1



 are linearly dependent, since

2 ·





1

2

0



+ 1 ·





0

3

1



 =





2

7

1



 ⇐⇒ 2 ·





1

2

0



+ 1 ·





0

3

1



−





2

7

1



 =





0

0

0





Definition 7. The rank of a matrix A, written rank(A), is the maximum

number of linearly independent column vectors of A.

Observation. rank(0m×n) = 0.

Observation. Elementary row operations do not change the rank of a matrix.

(cf. Exercises)

Observation. If A is in row echelon form, then rank(A) equals the number of

pivots.

Corollary. A~x =~b has a solution iff rank(A) = rank(A |~b).
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1.2.1 Vector spaces

Definition 8 (Function). A function f from X to Y is a subset G f of the

Cartesian product X×Y := {(x, y) | x ∈ X ∧ y ∈ Y} such that every element

of X is in the first component of exactly one pair in the subset.

1

2

3

D

B

C

A

X
Y

G f = {(1, D), (2, C), (3, C)}

Notation. f : X → Y, X is called domain, Y codomain. (x, y) ∈ G f ⇐⇒
f (x) = y, where x ∈ X, y ∈ Y.

Example.

– f : R → R, f (x) = x2

︸ ︷︷ ︸

alternatively x 7→ f (x):=x2

.

– g : R
2 → R

3,

(
x

y

)

7→





xy

x + y

x2 + y2





Theorem 1. Let V = R
m×n, A, B ∈ V and r, s ∈ R. There are functions

+ : V ×V → V, (A, B) 7→ +(A, B) := A + B (VS+)

· : R×V → V, (r, A) 7→ · (r, A) := r · A (VS·)

satisfying

A + B = B + A (VS1)

(A + B) + C = A + (B + C) (VS2)

r(A + B) = rA + rB (VS3)

(r + s)A = rA + sA (VS4)

(rs)A = r(sA) (VS5)

1 · A = A (VS6)

for all A, B, C ∈ V, r, s ∈ R and

Here: 0 = 0m×n.

X = −A := (−1) · A
∃! 0 ∈ V with A + 0 = A ∀A ∈ V (VS7)

For each A ∈ V ∃! X ∈ V with A + X = 0. (VS8)

Definition 9. Let V be a set with functions “+” and “·” satisfying VS1–8

from Theorem 1, then (V,+, ·) or simply V is called a real vector space.

Example.

– R
m×n ∀m, n ∈ N>0

– the set of functions : D → R (D arbitrary)
( f + g)(w) = f (w) + g(w);
(r · f )(w) = r · f (w)

– polynomials with degree at most n ∀n ∈ N>0.A polynomial is given by

∑
n
i=0 ai · xi; its degree is

max{i | ai 6= 0, 0 ≤ i ≤ n}. Elements of V are called “vectors”. Therefore Definiton 6 (linear indepen-

dence) can be applied to all real vector spaces.
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Definition 10. Let V be a real vector space and S := {v1, . . . , vk}, k ∈ N, be

a set of elements of V. Then

span(S) :=

{
k

∑
i=1

λivi | k ∈ N, vi ∈ S, λi ∈ R

}

is called the (linear) span of S and is itself a vector space.

Example.

– span















2

0

0



 ,





0

1

0



 ,





0

0

1













 = R
3

– span










span















0

2

0



 ,





0

0

1













 ,





0

5

3















= span















0

2

0



 ,





0

0

1













 = span















0

1

0



 ,





0

0

1















Remark. Another common notation for the span of a set of vectors S is to

enclose the set in angle brackets, that is, span(S) = 〈S〉.

Definition 11. A basis of a (real) vector space V is a linearly independent

subset of V that spans V.

Example. The unit vectors e
(n)
1 , . . . , e

(n)
n , whereAbbreviated as e1, . . . , en

whenever the dimension of
the surrounding space is
clear.

R 3 e
(n)
i =














0
...

0

1

0
...

0














← ith position

form a basis of R
n.

1.3 Inverse matrix

Given A ∈ R
n×n, does X ∈ R

n×n with

AX = In×n = XA

exist? If so, X is called inverse matrix and denoted by A−1.

Computation. Solve the n equation systems Axi = ei simultaneously.
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Example.

A =





1 2 0

2 4 1

2 1 0



 ↪−→





1 2 0 1 0 0

2 4 1 0 1 0

2 1 0 0 0 1





R2||R2−2·R1
↪−−−−−−→
R3||R3−2·R1





1 2 0 1 0 0

0 0 1 −2 1 0

0 −3 0 −2 0 1




R2↔R3
↪−−−−→





1 2 0 1 0 0

0 −3 0 −2 0 1

0 0 1 −2 1 0





R1||R1+ 2
3 ·R2

↪−−−−−−−→
R2||− 1

3 ·R2





1 0 0 −1/3 0 2/3

0 1 0 2/3 0 −1/3

0 0 1 −2 1 0





Note that at the end we have the identity matrix (In×n) on the left hand side

of the vertical bar and the inverse of A, i.e. A−1, on the right hand side.

Definition 12. Let A ∈ R
n×n. If A−1 exists A is called regular and singular

otherwise.

1.4 Multilinear maps

Definition 13. Suppose U1, . . . , Uk, V are R-vector spaces. A map Φ : U1 ×
· · · ×Uk → V is called k-linear if ∀ui, vi ∈ Ui, λ ∈ R, 1 ≤ j ≤ k we have

Φ(u1, . . . , uj−1, uj + vj, uj+1, . . . , uk)

= Φ(u1, . . . , uk) + Φ(u1, . . . , uj−1, vj, uj+1, . . . , uk)

and

Φ(u1, . . . , uj−1, λ · uj, uj+1, . . . , uk) = λ ·Φ(u1, . . . , uk).

If U1 = · · · = Uk, V = R then Φ is called a k-linear form on U (bilinear form

for k = 2).

Definition 14. Let U be a real vector space and Φ : Uk → R a k-linear form

on U, then Φ is called symmetric if

Φ(u1, . . . , ui−1, ui, ui+1, . . . , uj−1, uj, uj+1, . . . , uk)

=Φ(u1, . . . , ui−1, uj, ui+1, . . . , uj−1, ui, uj+1, . . . , uk)

for all 1 ≤ i < j ≤ k and uk ∈ U. It is called skew symmetric if

Φ(u1, . . . , ui−1, ui, ui+1, . . . , uj−1, uj, uj+1, . . . , uk)

= −Φ(u1, . . . , ui−1, uj, ui+1, . . . , uj−1, ui, uj+1, . . . , uk)

Definition and Proposition 1. For n ∈ N>0 det(n) : (Rn)n → R is the unique

skew-symmetric n-linear form on R
n such that det(n)(e

(n)
1 , . . . , e

(n)
n ) = 1. Let

A = (~a1| · · · |~an) ∈ R
n×n (with column vectors~ak ∈ R

n for k = 1, . . . , n), then

the determinant of A is denoted by

|A| := det(A) := det (n)(~a1, . . . ,~an).

The following rules apply:
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– det(n)(∗,~0, ∗) = 0

– det(n)(∗, λ~u, ∗) = λ det(n)(∗,~u, ∗) for λ ∈ R,~u ∈ R
n

– det(n)(∗,~u, ∗,~u, ∗) = 0 for ~u ∈ R
n

– det(n)(∗,~u, ∗,~v, ∗) = −det(n)(∗,~v, ∗,~u, ∗) for ~u,~v ∈ R
n

– det(n)(∗,~u, ∗,~v, ∗) = det(n)(∗,~u, ∗,~v + λ~u, ∗) for λ ∈ R,~u,~v ∈ R
n

– det(A) = det(AT)

– det(In×n) = 1

– det

(
d1 0...
0 dn

)

= det

(
d1 ∗...
0 dn

)

= det

(
d1 0...
∗ dn

)

= ∏
n
i=1 di

– det
(

A 0
0 B

)
= det(A) · det(B), where B ∈ R

m×m is also a square matrix.

Computation. Use elementary row operations to obtain row echelon form,

then compute the product of the diagonal elements.

Example.

∣
∣
∣
∣
∣
∣

1 2 0

2 4 1

2 1 0

∣
∣
∣
∣
∣
∣

R2||R2−2·R1
=

R3||R3−2·R1

∣
∣
∣
∣
∣
∣

1 2 0

0 0 1

0 −3 0

∣
∣
∣
∣
∣
∣

R2↔R3
= −

∣
∣
∣
∣
∣
∣

1 2 0

0 −3 0

0 0 1

∣
∣
∣
∣
∣
∣

= 3

Definition 15. The scalar product of ~x,~y ∈ R
n is defined as 〈~x,~y〉 := ~x T~y.

Remark. 〈·, ·〉 is a symmetric bilinear form on R
n.~x T~y = (~x T~y)T = ~y T~x

Definition 16. The (Frobenius) scalar product of A, B ∈ R
m×n is defined as

〈A, B〉 := tr(ATB).

Remark. 〈·, ·〉 is a symmetric bilinear form on R
m×n.

Definition 17. For an R-vectorspace V a norm is a function ‖·‖ : V → R

satisfying

(1) ‖a ·~v‖ = |a| · ‖~v‖ (absolute homogenity)

(2) ‖~u +~v‖ ≤ ‖~u‖+ ‖~v‖ (triangle inequality)

(3) ‖~v‖ = 0 =⇒ ~v = 0 (separate points)

for all a ∈ R,~u,~v ∈ V.

Observation. ‖0‖ = 0 (from (3)), ‖−~v‖ = ‖~v‖ (from (1)), (2) implies ‖~v‖ ≥ 0

(positivity).

Remark. The scalar product induces a norm on R
n: ‖·‖2 : R

n → R, ~x 7→
√

〈~x,~x〉.

Example. ‖
(
4 4 7

)T‖2 =
√

42 + 42 + 72 = 9
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‖·‖F : R
m×n → R, A 7→

√

〈A, A〉 is called the Frobenius norm.

Definition 18. A distance function on a set M is a mapping d : M×M→ R

satisfying

(1) d(x, y) = 0 ⇐⇒ x = y

(2) d(x, y) = d(y, x) (symmetry)

(3) d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality)

for all x, y, z ∈ M.

Observation. 0
(1)
= d(x, x)

(3)

≤ d(x, y) + d(y, x)
(2)
= 2 · d(x, y) =⇒ d(x, y) ≥ 0

∀x, y ∈ M.

Remark. Any norm ‖·‖ on V induces a distance function: d(x, y) := ‖x− y‖.

1.5 Eigenvalues and -vectors

Definition 19. Let A ∈ R
n×n. If A~x = λ~x, where λ ∈ R and ~x ∈ R

n \ {0},
then λ is called eigenvalue and ~x eigenvector (associated with λ) of A.

How can eigenvalues be found?

A~x = λ~x ⇐⇒ (A− λI)~x =~0

∃ solution ~x 6=~0 ⇐⇒ |A− λI| = 0

Once an eigenvalue λ has been determined its associated eigenvector is

found by solving the homogeneous system of linear equations (A− λI)~x =
~0.

Definition 20. Let A ∈ R
n×n, 1 ≤ i, j ≤ n. The (i, j)-minor of A is |Aij|, where

Aij arises from A by deleting the ith row and the jth column.

Example.

A =





1 12 13

10 20 30

4 15 6



 A12 =

(
10 30

4 6

)

The (i, j)-cofactor is the (i, j)-minor multiplied by (−1)i+j.

Theorem 2 (Laplace formula). Let A ∈ R
n×n.

det(A) =
n

∑
j=1

(−1)i+jaij · |Aij|
︸ ︷︷ ︸

expansion by ith row

=
n

∑
i=1

(−1)i+jaij · |Aij|
︸ ︷︷ ︸

expansion by jth column



Chapter 1 15 Linear Algebra

Corollary (Characteristic polynomial). p(λ) := |A − λI| is a polynomial of

degree n in λ for each A ∈ R
n×n and

p(λ) = (−λ)n + bn−1(−λ)n−1 + · · ·+ b1(−λ) + b0 (1.1)

for some b0, b1, . . . , bn−1 ∈ R.

Remark. The roots of the characteristic polynomial are precisely the eigen-

values of A. Denoting the eigenvalues by λ1, . . . , λn we have

p(λ) = (−1)n(λ− λ1)(λ− λ2) · · · · · (λ− λn) = (−1)n
n

∏
i=1

(λ− λi). (1.2)

Theorem 3. Using above notation:

(a) |A| = ∏
n
i=1 λi

(b) tr(A) = ∑
n
i=1 λi

Proof. From (1.1) we have p(0) = b0 = |A|. Plugging in λ = 0 into (1.2)

we have p(0) = (−1)n(−1)n ∏
n
i=1 λi. Putting both together we have |A| =

∏
n
i=1 λi.

Now consider ∏
n
i=1(aii − λ) (product of main diagonal) and determine bn−1

in (1.1). The Laplace formula yields bn−1 = ∑
n
i=1 aii = tr(A). Finally, con-

sider the coefficient of (−λ)n−1 in the expansion of (1.2): bn−1 = ∑
n
i=1 λi.

This implies tr(A) = ∑
n
i=1 λi.

Definition 21. A ∈ R
n×n is called orthogonal if AT A = AAT = In×n.

Definition 22. Each E ∈ R
n×n resulting from an elementary row operation

on In×n is called an elementary n× n-matrix .

Lemma 4. Let E be an elementary m×m matrix obtained by performing a partic-

ular row operation on Im×m. For each A ∈ R
m×n applying the same row operation

on A yields E · A.

Lemma 5. Let E be an elementary n× n matrix and B ∈ R
n×n be arbitrary. Then

det(E · B) = det(E) · det(B).

Lemma 6. Each elementary matrix is invertible. Its inverse is an elementary ma-

trix.

Ek · . . . · E2 · E1
︸ ︷︷ ︸

elementary matrices

·A = U ⇐⇒ A = E−1
1 · E−1

2 · . . . · E−1
k ·U

where U is in (reduced) row echelon form. If A is invertible then there exist elemen-

tary matrices with A = E1 · E2 · . . . · Ek.

Theorem 7. For A, B ∈ R
n×n, |A · B| = |A| · |B|.
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Proof. (a) A invertible =⇒ ∃ elementary matrices Ei with A = E1 · . . . · Ek.

Now,

det(A · B) = det(E1 · . . . · Ek · B)
= det(E1) · det(E2 · . . . · Ek · B)
...

= det(E1) · det(E2) · . . . · det(Ek) · det(B)

= det(E1 · . . . · Ek) · det(B)

= det(A) · det(B).

(b) A singular =⇒ ∃ elementary matrices Ei with A = E1 · . . . · Ek · R,

where R is in row echelon form so its bottom rows contain zeroes only.

As before

det(A · B) = det(E1 · . . . · Ek) · det(R · B).
Since the bottom rows of R contain zeroes only det(R · B) = 0. There-

fore det(A · B) = 0, det(A) = 0 and the statement follows.

Corollary. If A ∈ R
n×n is regular, then det(A−1) = det(A)−1.1 = det(I) = det(A · A−1) =

det(A) · det(A−1)

1.6 Diagonalization

Lemma 8. Let A, P ∈ R
n×n, P regular. Then A and P−1 AP have the same

eigenvalues.

Proof. Consider the characteristic polynomial:

|P−1 AP− λI| = |P−1AP− P−1λIP| = |P−1(A− λI)P| = |P−1||A− λI||P|
= |A− λI|.

Definition 23. A ∈ R
n×n is diagonalizable if there exists a regular matrix

P ∈ R
n×n and diagonal matrix D ∈ R

n×n such that P−1AP = D.

Theorem 9. A ∈ R
n×n is diagonalizable iff it has a set of n linearly independent

eigenvector ~x1, . . . ~xn. Further

P−1 AP =

(
λ1 0

. . .
0 λn

)

=: D

where P = (~x1| · · · |~xn) and λ1, . . . , λn are the corresponding eigenvalues.

Proof. “⇐=”: Suppose A has n linearly independent eigenvectors ~x1, . . . , ~xn

with corresponding eigenvalues λ1, . . . , λn. (This implies that P is regular.)

Then

AP = A(~x1| · · · |~xn) = (A~x1| · · · |A~xn) = (λ1~x1| · · · |λn~xn) = P

(
λ1 0

. . .
0 λn

)

.
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“=⇒”: A diagonalizable =⇒ ∃ P̄, D̄ : P̄−1AP̄ = D̄ where D̄ is diagonal.

=⇒ AP̄ = P̄D̄. Let P̄ = (~y1| · · · |~yn) then

AP̄ = P̄D̄ ⇐⇒ A(~y1| · · · |~yn) = (~y1| · · · |~yn)

(
λ̄1 0

. . .
0 λ̄n

)

= (λ̄1~y1| · · · |λ̄n~yn).

This implies that ~y1, . . . , ~yn must be eigenvectors of A and the diagonal ele-

ments of D̄ the corresponding eigenvalues.

1.7 Subspaces attached to a matrix

Definition 24. Let A = (~a1| · · · |~an), where ~ai ∈ R
m. Then Col(A) :=

〈~a1, . . . , ~an〉 is called the column space (or image) of A.

Observation. Col(A) = {A~x | ~x ∈ R
n}. Elementary column operations on A,

i.e. elementary row operations on AT do not change the column space.

Definition 25. The dimension of an R-vector space V is the cardinality, i.e.

the number of vectors, of a basis of V. Notation: dim(V).

Example.

〈(
1
0
0
0

)

,

(
0
0
1
0

)

,

(
0
0
0
1

)〉

has dimension 3.

Definition 26. Let ~a1, . . . , ~am ∈ R
1×n be the rows of A ∈ R

m×n, i.e. AT =

(~a1
T| · · · |~am

T). Then Row(A) := 〈~a1, . . . , ~am〉 is called the row space of A.

Observation. Row(A) = {~xA | ~xT ∈ R
m}. Elementary row operations do not

change the row space.

Corollary. Let A ∈ R
m×n and R be a row echelon form of A. Then

– the nonzero row vectors of R are a basis of Row(A),

– dim(Row(A)) = rank(A),

– columns of A whose corresponding columns in R contain a pivot form a basis

of Col(A), and

– dim(Col(A)) = dim(Row(A)) = rank(A).

Definition 27. For A ∈ R
m×n the kernel ker(A) (or null space) is given by

{~x ∈ R
n | A~x =~0}.

Theorem 10. Let A ∈ R
m×n. Then

dim(Col(A)) + dim(ker(A)) = n.



Chapter 1 18 Linear Algebra

1.8 Quadratic forms

Definition 28. A quadratic form on R
n is a function Q : R

n → R, ~x 7→ ~xT A~x,

where the associated matrix A ∈ R
n×n is symmetric.

Definition 29. A quadratic form as well as its associated matrix A is

(a) positive definite if ~xT A~x > 0 ∀x 6= 0,

(b) positive semi-definite if ~xT A~x ≥ 0 ∀x 6= 0,

(c) negative definite if ~xT A~x < 0 ∀x 6= 0,

(d) negative semi-definite if ~xT A~x ≤ 0 ∀x 6= 0,

(e) indefinite if ∃ ~x,~y with ~xT A~x > 0 and ~yT A~y < 0.

Definition 30. Two vectors ~x,~y ∈ R
n with 〈~x,~y〉 = 0 are called orthogonal.

Theorem 11 (Spectral theorem for symmetrical matrices). Let A ∈ R
n×n be

symmetric. Then:

(a) All eigenvalues λ1, . . . , λn of A are real numbers.

(b) Eigenvectors corresponding to different eigenvalues are orthogonal.

(c) A is diagonalizable. Moreover, the corresponding matrix P (such that P−1 AP

is diagonal) can be chosen to be orthogonal.

Theorem 12. Let A ∈ R
n×n be symmetric with eigenvalues λ1, . . . , λn. Then:

(a) A is positive definite. ⇐⇒ λ1, . . . , λn ∈ R>0.

(b) A is positive semi-definite. ⇐⇒ λ1, . . . , λn ∈ R≥0.

(c) A is negative definite. ⇐⇒ λ1, . . . , λn ∈ R<0.

(d) A is negative semi-definite. ⇐⇒ λ1, . . . , λn ∈ R≤0.

(e) A is indefinite. ⇐⇒ A has eigenvalues of opposite signs.

Proof. Choose P ∈ R
n×n orthogonal such that

PT AP =

(
λ1 0

. . .
0 λn

)

and set ~y = PT~x. Then ~xT A~x = ~yTPT AP~y = ∑
n
i=1 λi~yi

2. Choosing ~y = ~ei

proves the theorem.

Definition 31. Let A ∈ R
n×n. A k × k submatrix of A formed by deleting

the same n− k rows and columns, say i1 < i2 < · · · < in−k, is called a k-th

order principal submatrix of A. The corresponding determinant is called a

k-th order principal minor. The leading principal submatrix/minor is the one

where the last n− k rows and columns are deleted.
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Theorem 13. Let A ∈ R
n×n be symmetric, Dk be a leading principal minor of

order k, and Ak a principal minor of order k, then:

(a) A is positive definite. ⇐⇒ Dk > 0 for k = 1, . . . , n.

(b) A is positive semi-definite. ⇐⇒ Ak ≥ 0 for k = 1, . . . , n.

(c) A is negative definite. ⇐⇒ (−1)kDk > 0 for k = 1, . . . , n.

(d) A is negative semi-definite. ⇐⇒ (−1)k Ak ≥ 0 for k = 1, . . . , n.

1.9 Miscellaneous

Definition and Proposition. Let A ∈ R
n×n be a matrix with real eigenval-

ues only (e.g., a symmetric matrix). Let λ1, . . . , λk be the pairwise different

eigenvalues of A with multiplicity m
(alg)
j for j = 1, . . . , k, i.e., ∑

k
j=1 m

(alg)
j = n.

Then the characteristic polynomial can be written as:

p(λ) =
k

∏
j=1

(λ− λj)
m

(alg)
j

The multiplicity m
(alg)
j is called the algebraic multiplicity of λj.

The number of linearly independent eigenvectors corresponding to λj is

called its geometric multiplicity and is denoted by m
(geo)
j .

The following inequality holds: For each j = 1, . . . , k

m
(alg)
j ≥ 1 and 1 ≤ m

(geo)
j ≤ m

(alg)
j

In other words: There is always at least one eigenvector corresponding to

any eigenvalue. Its algebraic multiplicity tells us how many linearly inde-

pendent eigenvectors to expect at most. For example, if the algebraic multi-

plicity is one we know that there is only one corresponding eigenvector; if

it’s two there might be two. In fact, for a symmetric matrix we then know

that there have to be two.

Definition 32. A ∈ R
n×n
≥0 is called a (row) stochastic matrix if its rows sum to

1, i.e. ∑
n
j=1 aij = 1 for i = 1, . . . , n.

Lemma 14. If λ is an eigenvalue of a (row) stochastic matrix A, then |λ| ≤ 1.

Proof. Let ~x be an eigenvector of A corresponding to eigenvalue λ. Choose k

such that |xk| = max1≤j≤n |xj|, i.e., xk is the largest component of ~x. Then:

|λ| · |xk| = |λ · xk| =
∣
∣
∣
∣
∣

n

∑
j=1

akjxj

∣
∣
∣
∣
∣
≤

n

∑
j=1

|akjxj|

=
n

∑
j=1

|akj| · |xj| ≤
n

∑
j=1

|akj| · |xk| = |xk| ·
n

∑
j=1

|akj|

= |xk|
n

∑
j=1

akj

︸ ︷︷ ︸

=1

= |xk|
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This implies |λ| ≤ 1.

Definition 33. Let A ∈ R
n×n and C = (cij) ∈ R

n×n, where cij is the (i, j)-

cofactor of A. adj A := CT is called the adjoint of A.

Theorem 15. If A ∈ R
n×n is regular, then A−1 = det(A)−1 · adj A.

Observation.
∣
∣
∣
∣

a b

c d

∣
∣
∣
∣
=+ ad− bc

∣
∣
∣
∣
∣
∣

a11 a12 a13

a21 a22 a23

a31 a32 a33

∣
∣
∣
∣
∣
∣

=+ a11 · a22 · a33 − a11 · a23 · a32

+ a12 · a23 · a31 − a12 · a21 · a33

+ a13 · a21 · a32 − a13 · a22 · a31

Example. Let A =





2 4 5

0 3 0

1 0 1



. The (i, j)-cofactors, 1 ≤ i, j ≤ 3, are:

c11 = +
∣
∣ 3 0

0 1

∣
∣ = 3 c12 = −

∣
∣ 0 0

1 1

∣
∣ = 0 c13 = +

∣
∣ 0 3

1 0

∣
∣ = −3

c21 = −
∣
∣ 4 5

0 1

∣
∣ = −4 c22 = +

∣
∣ 2 5

1 1

∣
∣ = −3 c23 = −

∣
∣ 2 4

1 0

∣
∣ = 4

c31 = +
∣
∣ 4 5

3 0

∣
∣ = −15 c32 = −

∣
∣ 2 5

0 0

∣
∣ = 0 c33 = +

∣
∣ 2 4

0 3

∣
∣ = 6

So, adj A =





3 −4 −15

0 −3 0

−3 4 6



. Further,

2 4 5 2 4

0 3 0 0 3

1 0 1 1 1

= 2 · 3 · 1 + 4 · 0 · 1 + 5 · 0 · 1− 5 · 3 · 1− 2 · 0 · 0− 4 · 0 · 1

= 6− 15 = −9

Finally, A−1 = − 1
9





3 −4 −15

0 −3 0

−3 4 6



.

Theorem 16 (Cramer’s rule). Let A ∈ R
n×n be regular. The unique solution of

A~x =~b is given by xi =
det(Bi)
det(A)

∀ 1 ≤ i ≤ n, where Bi arises from A by replacing

the ith column of A by~b.

Example.




1 1 1

12 2 −3

3 4 1





︸ ︷︷ ︸

=A





x1

x2

x3



 =





0

5

−4





︸ ︷︷ ︸

=~b

, B3 =





1 1 0

12 2 5

3 4 −4



 .

Then det(A) = 35 and det(B3) = 35, so

x3 =
det(B3)

det(A)
=

35

35
= 1.
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2.1 Limits

Definition 34. A pair (M, d) is called a metric space if M is a set and d a

distance funtion on M. A pair (V, ‖·‖) is called normed (R-)vector space if

V is an (R-)vector space and ‖·‖ a norm on V.

Definition 35. A sequence in a metric space (M, d) is a function a : N →
M, k 7→ ak(∈ M). Notation: (ak)k∈N, (ak).

A subsequence is a sequence of the form (ank
)k∈N where (nk)k∈N is a strictly

increasing sequence of positive integers, i.e., n1 < n2 < n3 < . . . .

Example. For the metric space R
2, where the distance function is induced

by ‖·‖2, a : N>0 → R
2, k 7→

(
1−1/k
1/k2

)

or
(

1−1/n
1/n2

)

n∈N>0

is a sequence.

Definition 36. A point x of a metric space (M, d) is the limit of a sequence (xn)

(in M) if, for all ε ∈ R>0, there is an N ∈ N such that for every n ≥ N, we

have d(xn, x) < ε. Notation: limn→∞ xn = x. We say that (xn) converges to x.

Example (cont.). limn→∞

(
1−1/n
1/n2

)

=
(

1
0

)

Definition 37. Let V be an R-vector space. Two norms ‖·‖, ‖·‖′ on V are

called equivalent if there exist M, M ∈ R>0 such that M · ‖x‖ ≤ ‖x‖′ ≤
M · ‖x‖ for all x ∈ V.

Theorem 17. For each R-vector space of finite dimension all norms are equivalent.

Notation. Whenever we speak of a limit or convergence in R
n or R

m×n we

assume a distance function induced by any norm.

Lemma 18. For convergent sequences (an), (bn) in a normed R-vector space we

have

– lim
n→∞

(an ± bn) = lim
n→∞

an ± lim
n→∞

bn, and

– lim
n→∞

c · an = c · lim
n→∞

an for all c ∈ R.

Lemma 19. For convergent sequences (an), (bn) in R and all p ∈ R>0 we have
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– lim
n→∞

(an · bn) = lim
n→∞

an · lim
n→∞

bn,

– lim
n→∞

(
an

bn

)

=
limn→∞ an

limn→∞ bn
, provided limn→∞ bn 6= 0,

– lim
n→∞

(
a

p
n

)
=
(

lim
n→∞

an

)p
,

– if an ≤ bn for all n ≥ N, then limn→∞ an ≤ limn→∞ bn,

– if an ≤ cn ≤ bn for all n ≥ N and limn→∞ an = L = limn→∞ bn, then

limn→∞ cn = L, (this is known as the Squeeze theorem), and

– a sequence is convergent if and only if all of its subsequences are convergent.

Definition 38. Let (A, dA) and (B, dB) be two metric spaces, M ⊆ A, N ⊆ B

and f : M → N be a function. For a limit point p of M and L ∈ N we say

that the limit of f as x approaches p is L if:Note that p need not be in
the domain of f . Also
limx→p f (x) 6= f (p) is
possible if p ∈ M.

For all ε ∈ R>0 there is δ ∈ R>0 such that dB( f (x), L) < ε whenever

0 < dA(x, p) < δ.

Notation: limx→p f (x) = L.

Lemma 20. Using the same notation:

lim
x→p

f (x) = L ⇐⇒ lim
n→∞

f (xn) = L

for all sequences (xn) with limn→∞ xn = p and xi 6= p ∀i ∈ N>0.

Definition 39. A function f is continuous at x ∈ M if for every sequence

(xn) ⊆ M that converges to x, the sequence ( f (xn)) converges to f (x), i.e.

limx→x f (x) = f (x).

f is called continuous if it is continuous at every point in M.

Definition 40. A sequence (xn) in a metric space (M, d) is a Cauchy sequence

if for all ε ∈ R>0 there exists N ∈ N>0 such that for all i, j ≥ N : d(xi, xj) < ε.

Theorem 21. Let (xn) be a sequence in R
n.

(xn) is a Cauchy sequence. ⇐⇒ (xn) has a limit point.

Example. Let an = 1− 1

2
+

1

3
− · · ·+ (−1)n+1

n
for all n ∈ N>0. Does lim

n→∞
an

exist?

For m ≥ n and m− n even we have

|am − an| =
∣
∣
∣
∣

>0
︷ ︸︸ ︷

1

n + 1
− 1

n + 2
+

>0
︷ ︸︸ ︷

1

n + 3
− 1

n + 4
+ · · ·+

>0
︷ ︸︸ ︷

1

m− 1
− 1

m

∣
∣
∣
∣

=
1

n + 1
− 1

n + 2
+

1

n + 3
︸ ︷︷ ︸

<0

− · · · − 1

m− 2
+

1

m− 1
︸ ︷︷ ︸

<0

− 1

m

≤ 1

n + 1
− 1

m
≤ 1

n
.
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For m > n and m− n odd we have

|am − an| = |am − am−1 + am−1 − an| ≤ |am − am−1|+ |am−1 − an|

≤ 1

m
+

1

n
≤ 2

n
.

Therefore the limit exists. (limn→∞ an = ln 2.)

Definition 41. A metric space (M, d) in which every Cauchy sequence con-

verges to an element of M is called complete.

Example. R
n is complete for all n ∈ N>0.

Definition 42. The vector ~x ∈ R
n is called an accumulation point of the se-

quence (~xk) (over R
n) if for any given ε > 0 there are infinitely many integers

l such that ‖~xl −~x‖ < ε.

2.2 Classification of sets

Definition 43. A subset U of a metric space (M, d) is called open, if there

exists ε ∈ R>0 for any point x ∈ U such that Bε(x) ⊆ U, where Bε(x) :=

{y ∈ M | d(x, y) < ε} (open ball around x).

Example. The interval (0, 1) = {x ∈ R | 0 < x < 1} is open (in R). Open

balls are open sets.

Observation.

(a) Any union of open sets is open.

(b) The finite intersection of open sets is open.

Definition 44. A subset U of a metric space (M, d) is called closed, if its

complement Uc = M \U is open.

Example. {(x, y) | x2 + y2 ≤ 1} ⊆ R
2 (disc with radius 1) and [a, b] = {x ∈

R | a ≤ x ≤ b} ⊆ R are closed.

Observation.

(a) Any intersection of closed sets is closed.

(b) The finite union of closed sets is closed.

Definition 45. Let U be a subset of a metric space (M, d). The closure cl(U)

(or U) of U is the intersection of all closed sets (in M) containing U.cl(U) is closed.

Example. Bε(x) = {y ∈ M | d(x, y) ≤ ε} is a closed ball around x.

Theorem 22. A set U in R
n is closed if, whenever (xn) ⊆ U is a convergent

sequence, its limit is also contained in U.
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Example. U = [0, 1) = {x ∈ R | 0 ≤ x < 1}, xn = 1− 1/n ∈ U ∀n ∈ N>0

but limn→∞ xn = 1 /∈ U.

Definition 46. Let U be a subset of a metric space (M, d). The interior int(U)

of U is the union of all open sets contained in U.

Definition 47. Given a metric space. A point x is in the boundary of S if every

open ball around x contains both points in S and points in the complement

of S.

Example. The boundary of [0, 1] is {0, 1}. As is the boundary of [0, 1).

Theorem 23. The set of boundary points of a set S equals cl(S) ∩ cl(Sc).

Definition 48. A subset U of a normed R-vector space (V, ‖·‖) is bounded

if there exists a constant B ∈ R such that ‖x‖ ≤ B for all x ∈ U. (In other

words, U is contained in some ball (of finite radius).)

Definition 49. A subset U of a normed R-vector space (V, ‖·‖) is compact if

it is closed and bounded.

Example. The n-dimensional box×n
i=1[ai, bi] ⊆ R

n is compact.

Theorem 24 (Bolzano-Weierstrass). Let C be a compact subset in R
n and let

(xn) be any sequence in C. Then, (xn) has a convergent subsequence whose limit

lies in C.

Corollary. Let C be a compact subset in R
n, (V, ‖·‖) be a normed R-vector space,

and f : C → V be a continuous function. Then, f is bounded, i.e. there exists a

constant ∆ ∈ R such that ‖ f (x)‖ ≤ ∆ for all x ∈ C.

Proof. Assume that f is not bounded, i.e. for each n ∈ N>0 there exists a

point xn ∈ C with ‖ f (xn)‖ ≥ n. Let (yk) be a convergent subsequence with

limit y ∈ C. Since f is continuous we have limk→∞ f (yk) = f (y). But that is

impossible if ‖ f (xik
)‖ ≥ ik, where yk = xik

.

Example. f : [0, 1]3 → R
2,





x

y

z



 7→
(

x2 + yz

x + y + z

)

is bounded.

2.3 Extreme values

Definition 50. Let S ⊆ R. The infimum inf(S) is the largest real number that

is less than or equal to every number in S. If no such number exists, then

we define inf(S) := −∞. If S = ∅, we define inf(S) := +∞.

The supremum sup(S) is given by sup(S) := − inf(−S), where −S := {−x |
x ∈ S}.

Example. inf([0, 1]) = 0, sup([0, 1)) = 1.
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Definition 51. Let f : M → R be a function. f has a global (or absolute)

maximum at x? ∈ M if f (x?) ≥ f (x) for all x ∈ M. Similarly, f has a global

(or absolute) minimum at x? ∈ M if f (x?) ≤ f (x) for all x ∈ M.

Example. f : (−1, 1) → R, x 7→ x2 has a global minimum (at x = 0) but nosup({ f (x)|x ∈ (−1, 1)}) =
1, but f (x) < 1 ∀x ∈ (−1, 1) global maximum.

Theorem 25. (Extreme value theorem) Let C be a compact subset in R
n and f :

C → R a continuous function. If C 6= ∅ then f has a global maximum and a global

minimum.

2.4 Differentiable functions

Definition 52. Let f : M → R be a function and x0 ∈ M ⊆ R be an accu-

mulation point. The derivative of f at x0 , written f ′(x0) or
d f
dx (x0) is given

by

lim
h→0

f (x0 + h)− f (x0)

h

if this limit exists.

If so we say that f is differentiable at x0 with derivative f ′(x0).

If f is differentiable at all x0 ∈ M, we say that f is differentiable with deriva-

tive f ′.

Observation. Differentiability implies continuity.

Theorem 26 (Linearity of the derivative). Let f : M → R, g : M → R be

differentiable on M ⊆ R, then we have

(1) (r · f )′ = r · f ′ ∀r ∈ R, and

(2) ( f + g)′ = f ′ + g′.

Theorem 27 (product and quotient rule). Let f : M → R, g : M → R be

differentiable on M ⊆ R, then

(1) ( f · g)′ = f ′ · g + f · g′, and

(2) ( f /g)′ =
f ′g− f g′

g2
if g(x) 6= 0 ∀x ∈ M.

Definition 53. Let f : X → Y and g : Y → Z be two functions. The composi-

tion is given by g ◦ f : X → Z, x 7→ g( f (x)).

Theorem 28 (Chain rule, one dimension). Let g : M1 → M2, f : M3 → R with

M1, M2, M3 ⊆ R and M2 ⊆ M3, then ( f ◦ g)′ = ( f ′ ◦ g) · g′.
Example.

(x2 + 4x + 1)7 = f ◦ g with f : x 7→ x7, g : x 7→ x2 + 4x + 1, so:

( f ◦ g)′ = 7 · (x2 + 4x + 1
︸ ︷︷ ︸

g(x)

)6

︸ ︷︷ ︸

f ′(g(x))

· 2x + 4
︸ ︷︷ ︸

g′(x)

.
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Definition 54. A function f : X → Y is called surjective if for all y ∈ Y there

exists x ∈ X such that f (x) = y. It is called injective if f (a) = f (b) implies

a = b.

If it is both surjective and injective, then it is called bijective.

For all X̃ ⊆ X the restriction of f to X̃ is given by f
∣
∣

X̃
: X̃ → Y, x 7→ f (x).

Definition 55. Let f : X → Y be a function. A function g : Y → X is called

inverse function of f it g ◦ f = idX, where idX : X → X, x 7→ x.

Theorem 29. An inverse function exists for a function f : X → Y if and only if f

is bijective. In that case the inverse function is unique and denoted by f−1.

Definition 56. If a function f is differentiable and its derivative is continuous

then we call f continuously differentiable and write f ∈ C1.

Theorem 30 (Inverse function theorem). Let f : I → M ⊆ R be a bijective C1

function, where I ⊆ R is an interval. If f ′(x) 6= 0 ∀x ∈ I, then

(

f−1
)′

(ξ) =
1

f ′( f−1(ξ))

for ξ := f (x) and f−1 is a C1 function on the interval f (I) = { f (x) | x ∈ I }.

Example. f : [−π/2, π/2] → [−1, 1], x 7→ sin(x), arcsin := f−1. Then

f ′(x) = cos(x) and

(

f−1
)′

(x) = arcsin′(x) =
1

cos(arcsin(x))
.

Since sin2(x) + cos2(x) = 1 we have cos(x) = ±
√

1− sin2(x). For a :=

arcsin(x) ∈ [−π/2, π/2] we have cos(a) ≥ 0. Hence,

arcsin′(x) =
1

√

1− sin2(arcsin(x))
=

1√
1− x2

.

Definition 57. For each k ∈ N≥0 we denote by
dk f

dxk
the k-th order derivative

of a funtion f by setting

d0 f

dx0
= f and

dk f

dxk
=

d

dx

(
dk−1 f

dxk−1

)

for all k ≥ 1. If dk f /dxk exists and is continuous, we write f ∈ Ck (k ≥ 0). If

f ∈ Ck ∀k ∈ N≥0, we write f ∈ C∞.

Example. f (x) = x3,
d f

dx
= 3x2,

d2 f

dx2
=

d f

dx
(3x2) = 6x,

d3 f

dx3
= 6,

dk f

dxk
=

0 ∀k ≥ 4, f ∈ C∞.
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Definition 58. Let f : M ⊆ R
n → R

m be a function and x̄ = (x1, . . . , xn) ∈ M

be an accumulation point. The partial derivative
∂ f

∂xi
at x̄ is given by

∂ f

∂xi
(x̄) = lim

h→0




 f






x1...
xi+h...

xn




− f






x1...
xi...
xn









 /h (1 ≤ i ≤ n)

if this limit exists.

Remark. Treat f as a function with a single variable xi.

Definition 59. For each k ∈ N>0 and each 1 ≤ i1, . . . , ik ≤ n

∂k f

∂xi1 · · · ∂xik

is called a k-th order partial derivative of f : M ⊆ R
n → R

m. For k ≥ 2 we set

∂k f

∂xi1 · · · ∂xik

=
∂

∂xi1

(
∂k−1 f

∂xi2 · · · ∂xik

)

.

Remark. There are nk k-th order partial derivatives.

Theorem 31 (Schwarz’ theorem). If f : R
n → R has continuous second order

partial derivatives, then

∂2 f

∂xi∂xj
=

∂2 f

∂xj∂xi
∀i, j ∈ { 1, . . . , n }.

Remark. A function f : R
n → R

m can be represented by m real-valued func-

tions fi : R
n → R (1 ≤ i ≤ m), so

f : R
n → R

m, ~x 7→






f1(~x)...

fm(~x)




 .

Definition 60. Let f : R
n ⊇ U → R

m be a function and x̄ an accumulation

point of U. If there exists a matrix Ax̄ ∈ R
n×m with

lim
x→x̄

‖ f (x)− f (x̄)− Ax̄ · (x− x̄)‖
‖x− x̄‖ = 0

then f is (totally) differentiable at x̄ ∈ U.

The linear map d f x̄ : ∆x 7→ Ax̄ · ∆x is called (total) derivative of f at x̄. A

function is (totally) differentiable if its total derivative exists at every point in

its domain.
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Theorem 32. Let f =

(
f1...
fm

)

: R
n ⊇ U → R

m, x̄ ∈ U, f (totally) differentiable

at x̄ and

J f (x̄) :=









∂ f1

∂x1
(x̄) · · · ∂ f1

∂xn
(x̄)

...
. . .

...
∂ fm

∂x1
(x̄) · · · ∂ fm

∂xn
(x̄)









(J f (x̄) is called Jacobi matrix). Then we have d f x̄ : R
n → R

m, ∆x 7→ J f (x̄)∆x,

i.e. we can compute Ax̄ via partial derivation.

Theorem 33. If all partial derivatives of f exist and are continuous, then f is

(totally) differentiable.

Example. Let f : R
2 → R,

(
x

y

)

7→
{

xy(x+y)
x2+y2 if (x, y) 6= (0, 0)

0 otherwise
. Note that

f ∈ C0. Then

∂ f

∂x
(x, y) =

{−y2(x2−2xy−y2)
(x2+y2)2 if (x, y) 6= (0, 0)

0 otherwise

∂ f

∂y
(x, y) =

{−x2(y2−2xy−x2)
(x2+y2)2 if (x, y) 6= (0, 0)

0 otherwise
.

So J f (0, 0) = ( 0 0 ). However, using the sequence
(

1/n
1/n

)

n∈N

(with limit
(

0
0

)
)

we find that

lim
x→

(
0
0

)

‖ f (x)− f
(

0
0

)
− ( 0 0 ) · x‖1

‖x‖1
= lim

n→∞

∥
∥ 1

n

∥
∥

1∥
∥
∥

(
1/n
1/n

)∥
∥
∥

1

= lim
n→∞

|1/n|
|1/n|+ |1/n| =

1

2
6= 0.

Thus, f is not (totally) differentiable at
(

0
0

)
.

Theorem 34 (Chain Rule, higher dimensions). Let f : D → W, g : W → V

be (totally) differentiable, then (g ◦ f ) is (totally) differentiable and d(g ◦ f )x̄ =

dg f (x̄) ◦ d f x̄, that is, Jg◦ f (x̄) = Jg( f (x̄)) · J f (x̄).

Definition 61. The directional derivative of f : R
n → R along the vector ~a, de-

noted by f ′
~a(~x), is given by

f ′
~a(~x) = lim

h→0

f (~x + h~a)− f (~x)

h
.

Lemma 35. Let f : R
n → R be (totally) differentiable function and ~a ∈ R

n be a

direction. Then

f ′
~a(~x) =

n

∑
i=1

∂ f

∂xi
(~x) · ai.



Chapter 2 29 Calculus

Proof. For some ~x,~a ∈ R
n set g(t) := f (~x + t ·~a). Note that g is a univariate

function. It holds

g′(t) = lim
h→0

g(t + h)− g(t)

h
and therefore g′(0) = lim

h→0

g(h)− g(0)

h
.

Plugging in we have

g′(0) = lim
h→0

f (~x + h ·~a)− f (~x)

h
= f ′

~a(~x).

Setting l(t) := ~x + t ·~a we see that we may apply the chain rule (for higher

dimensions) in order to differentiate g(t) since g = f ◦ l. We have dgt =

d fl(t) ◦dlt. The corresponding Jacobians are

J f (l(t)) =
(

∂ f
∂x1

(~x + t ·~a) · · · ∂ f
∂xn

(~x + t ·~a)
)

and Jl(t) =~a.

Multiplying the two matrices and plugging in t = 0 proves the lemma.

Remark. The directional derivative along the i-th unit vector ei coincides with

the corresponding partial derivative:

f ′ei
(~x) =

∂ f

∂xi
(~x).

Example. The function of the previous example was shown to be not (to-

tally) differentiable at
(

0
0

)
. We now show that Lemma 35 is indeed not

applicable. Let ~a =
(

1
1

)
. Using the definition of the directional derivative

we have:

f ′
~a(0, 0) = lim

h→0

f (h, h)

h
= lim

h→0

2h3

2h2 · h = 1.

However, Lemma 35 would yield:

f ′
~a(0, 0) =

∂ f

∂x
(0, 0) · 1 + ∂ f

∂y
(0, 0) · 1 = 0.

Definition 62. For each k ∈ N≥0 the k-th order Taylor polynomial of a function

f : R ⊇ U → R at a is given by

Ta
k (x) =

k

∑
i=0

di f

dxi
(a) · (x− a)i

i!
.

Example. Let f (x) =
√

x, k = 2 and a = 4. Then f ′(x) = 0.5 · x−0.5, f ′′(x) =

−0.25 · x−1.5, f (4) = 2, f ′(4) = 0.25, f ′′(4) = −0.03125, so

T4
2 (x) = 2 +

x− 4

4
− (x− 4)2

64
.

With this T4
2 (5) = 143/64 = 2.234375 ≈ 2.236067977 ≈

√
5.

Definition 63. For a function f : R
n ⊇ U → R

m we write f ∈ Ck if all k-th

order partial derivatives exist and are continuous. f ∈ C∞ if f ∈ Ck ∀k ∈
N>0.
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Theorem 36 (Taylor expansion). Let f : R ⊇ U → R be a Ck+1 function. For

any points x, a ∈ U, there exists a point x̃ between x and a in U such that

Ra
k(x) =

(x− a)k+1

(k + 1)!
· dk+1 f

dxk+1
(x̃),

where f (x) = Ta
k (x) + Ra

k(x) (Ra
k(x) is called remainder).

Remark. lim
x→a

Ra
k(x)

(x− a)k
= lim

x→a

1

(k + 1)!
· dk+1 f

dxk+1
(x̄)

︸ ︷︷ ︸

This term is bounded.

·(x− a) = 0.

Definition 64. For f : R
n ⊇ U → R the gradient of f is given by ∇ f (x) =

J f (x)T.

Definition 65. For each k ∈ N>0 the k-th order Taylor polynomial of a function

f : R
n ⊇ U → R

m at~a ∈ U is given by

T~a
k (~x) = f (~a) +

n

∑
i=1

∂ f

∂xi
(~a) · (xi − ai)

+
1

2

n

∑
i,j

∂ f

∂xi∂xj
(~a) · (xi − ai)(xj − aj)

+ . . .

+
1

k!

n

∑
i1,...,ik=1

∂k

∂x1 · · · ∂xk
f (~a) ·

k

∏
j=1

(xij
− aij

).

Definition 66. Let f : R
n ⊇ U → R be a C2 function, then the Hessian matrix

at~a is given by

H f (~a) =










∂2 f

∂x1∂x1
(~a) · · · ∂2 f

∂xn∂x1
(~a)

...
. . .

...
∂2 f

∂x1∂xn
(~a) · · · ∂2 f

∂xn∂xn
(~a)










Observation. The second order Taylor polynomial for a function f : R
n ⊇→ R

is

T~a
2 (~x) = f (~a) + J f (~a) · (~x−~a) +

1

2
(~x−~a)T H f (~a)(~x−~a)

= f (~a) + (~x−~a)T∇ f (~a) +
1

2
(~x−~a)T H f (~a)(~x−~a).

Theorem 37. Let f : R
n ⊇ U → R, ~x,~a ∈ U such that the line segment from ~x to

~a lies in U and f ∈ C2. For R~a
2(~x) = f (~x)− T~a

2 (~x) we have

lim
~x→~a

R~a
2(~x)

‖~x−~a‖2
= 0.
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Definition 67. Let f : R
n ⊇ U → R.

– x∗ ∈ int(U) is a a local (or relative) maximum or minimum of f , it there

exists a ball Bε(x∗) such that f (x∗) ≥ f (x) or f (x∗) ≤ f (x) for all

x ∈ Bε(x∗) ∩U.

– x∗ ∈ int(U) is a strict local (or relative) maximum or minimum of f , if

there exists a ball Bε(x∗) such that f (x∗) > f (x) or f (x∗) < f (x) for all

x∗ 6= x ∈ Bε(x∗) ∩U.

Figure 3.1 illustrates above definition.

Consider the one-dimensional case to get a notion of how to find extrema:

From Theorem 36 (page 30) we know that a function f : R → R may be

represented at a point a as

f (x) = f (a) + f ′(a)(x− a) + Ra
1(x).

Assume that the error term Ra
1(x) is negligibly small and that f ′(a) 6= 0.

Then the situation is similar to either the left ( f (a) > 0) or the right ( f (a) <

0) picture:

f (a)
a

f (x)

f (a) + f ′(a)(x− a)

f (a)
a

f (x)
f (a) + f ′(a)(x− a)

Clearly neither situation shows an extremum: In the left picture f (a + ε) >

f (a) and f (a− ε) < f (a) for ε ∈ R>0 (the situation on the right is similar).

We conclude that f (a) = 0 is a necessary condition for an extremum, hence

the following defintion:

Definition 68. Let f : R
n ⊇→ R. Any point x∗ ∈ U that satisfies ∇ f (x∗) =~0

is called critical or stationary point.

Observation. Global maxima/minima are either
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Figure 3.1: Graph with extrema highlighted: outlined circles/diamonds

indicate local maxima/minima (all but the last are strict); filled cir-

cles/diamonds indicate global maxima/minima.

– critical points,

– points where the function is not differentiable, or

– boundary points.

Looking at the one-dimensional case proved useful before so let us do that

again. The 2nd order Taylor expansion of f at a is

f (x) = f (a) + f ′(a)(x− a) +
f ′′(a)

2
(x− a)2 + Ra

2(x).

Suppose that Ra
2(x) is negligibly small and that f ′(a) = 0. That leaves us

with f (a) + 0.5 · f ′′(a)(x − a)2. If f ′′(a) > 0 or f ′′(a) < 0 we have a strict

local minimum (left picture) or a strict local maximum (right picture):

f (a)
a

f (x)

f (a) + 0.5 f ′′(a)(x− a)2

f (a)
a

f (x)

f (a) + 0.5 f ′′(a)(x− a)2

If f ′′(a) = 0 we are unable to make a clear statement (it all depends on

Ra
2(x)). For higher dimensions we resort to quadratic forms:

Theorem 38. Let f : R
n ⊇ U → R be a C2 function and x∗ ∈ int(U) a critical

point.

(1) If H f (x∗) is negative definite, then x∗ is a strict local maximum of f .
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(2) If H f (x∗) is positive definite, then x∗ is a strict local minimum of f .

(3) If H f (x∗) is indefinite, then x∗ is neither a local maximum nor a local mini-

mum. (saddle point)

Recall that Ta
2 (x) = f (a) + J f (a)(x− a) + 1

2 (x− a)T H f (a)(x− a).

Remark. For Ra
2(x) different limit results are available.

Theorem 39. Let f : R
n ⊇ U → R be a C2 function and x∗ ∈ int(U). If x∗ is a

local maximum (or local minimum) of f , then J f (x∗) = 0 and H f (x∗) is negative

(positive) semi-definite.

Example. Let f : U → R, x 7→ 2 − |x| + 2|x − 2| + 2|x + 2| with U =

[−3,−1 ] ∪ [ 1, 3 ]. Since f is continuous and U is compact (closed and

bounded) a global maximum and a global minimum exists.

int(U) = (−3,−1) ∪ (1, 3) and f can be written as

f (x) =







2− 3x if x ≤ −2

10 + x if − 2 < x ≤ −1

10− x if 1 ≤ x ≤ 2

2 + 3x if 2 < x

.

f
∣
∣
U\{−2,2 } is differentiable with

d f
∣
∣
U\{−2,2 }
dx

=







−3 if x ≤ −2

+1 if − 2 < x ≤ 1

−1 if 1 < x ≤ 2

+3 if 2 < x

.

Note that d f
∣
∣
U\{−2,2 }/dx 6= 0 for all x ∈ U. Looking at the boundary we

find that f (−3) = 11 = f (3) and f (−1) = 9 = f (1). And at the non-

differentiable points we have f (−2) = 8 = f (2). So we have global maxima

at ±3 and global minima at ±2.

3.1 Global optima – convex and concave optimisation

Definition 69. A set S ⊆ R
n is called convex if λx + (1 − λ)y ∈ S for all

x, y ∈ S and all λ ∈ [ 0, 1 ].

convex convex not convex not convex
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Definition 70. Let f : R
n ⊇ U → R be a function where U is convex.

– f is convex if f (λx + (1− λ)y) ≤ λ f (x) + (1− λ) f (y) for all x, y ∈ U

and all λ ∈ [ 0, 1 ].

– f is concave if f (λx + (1− λ)y) ≥ λ f (x) + (1− λ) f (y) for all x, y ∈ U

and all λ ∈ [ 0, 1 ].

Definition 71. The convex hull conv(U) is the smallest convex set containing

U.

Remark. conv({ u1, . . . , un }) = {∑
n
i=1 λiui | λi ≥ 0, ∑

n
i=1 λi = 1 }.

conv
( )

=

Example. f : R
2 → R, ( x1

x2
) 7→ x2

1 + x2
2 is convex.

Theorem 40. Let f : R
n ⊇ U → R be a C1 function, where U is convex:

– f is concave on U iff f (y) − f (x) ≤ J f (x)(y − x) for all x, y ∈ U, i.e.

f (y)− f (x) ≤ ∑
n
i=1

∂ f
∂xi

(x)(yi − xi).

– f is convex on U iff f (y)− f (x) ≥ J f (x)(y− x).

Theorem 41. Let f be a concave (convex) function on an open, convex subset

U ⊆ R
n. If x∗ is a critical point of f , then x∗ (∈ int(U)) is a global maximizer

(global minimizer) of f on U.

Theorem 42. Let f : R
n ⊇ U → R, where U is convex. If f ∈ C1 is concave

(convex) and x∗ ∈ U satisfies J f (x∗)(y− x∗) ≤ 0 (≥ 0) for all y ∈ U, then x∗ is a

global maximizer (minimizer) of f on U.

Example. f : T → R, ( x
y ) 7→ x1/4y1/4 where T = { (x, y) ∈ R

2 | x ≥ 0, y ≥
0, x + y ≤ 2 } = conv({

(
0
0

)
,
(

2
0

)
,
(

0
2

)
}) (T is convex). Then

∂ f

∂x
(1, 1) · (x− 1) +

∂ f

∂y
(1, 1) · (y− 1) =

x− 1

4
+

y− 1

4
=

x + y− 2

4
≤ 0,

so (1, 1) is a global maximum.
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Definition 72. A non-linear optimisation problem (NLP) is given by

min
~x∈Rn

f (x)

subject to hi(~x) ≥ 0 ∀i ∈ I

hi(~x) = 0 ∀i ∈ E

where I = { 1, . . . , m } is the index set of inequality constraints, E = {m +

1, . . . , m + p } the index set of equality constraints (note that both are finite),

f : R
n → R ∈ C1 is called cost function and hi : R

n → R ∈ C1 for i ∈ I ∪ E

are called constraint functions.

Notation. The admissible set is defined as Z := {~x ∈ R
n | hi(~x) ≥ 0 ∀i ∈

I, hi(~x) = 0 ∀i ∈ R }.
x̄ ∈ Z is a global minimum if f (x̄) ≤ f (~x) for all ~x ∈ Z.

x̄ ∈ Z is a local minimum if f (x̄) ≤ f (~x) for all ~x ∈ Z ∪ Bε(x̄) for some

ε ∈ R>0.

An inequality hi(~x) ≥ 0 (i ∈ I) is called active (inactive) at the point ~x if

hi(~x) = 0 (hi(~x) 6= 0).

The active set at the point ~x is defined as A(~x) := { i ∈ I ∪ E | hi(~x) = 0 }.

Example. The lines in the picture on the right depict inequality constraints.

The shaded area is the admissible set. The actice set for the points x̃, x∗ and

x̄ are A(x̃) = { }, A(x∗) = { 3 } and A(x̄) = { 1, 5 }, respectively.

(1)
(2)

(3)

(4)
(5)

x̄x∗ x̃

For affine-linear constraints, i.e. hi(~x) = ~aT
i + bi ≥ 0, the admissible set is a

polyhedron (polytope if bounded, like on the right).

4.1 Necessary conditions

Definition 73. For (NLP) the Lagrange function is defined as

L
(

~x,~λ
)

= f (~x)− ∑
i∈I∪E

λihi(x)

(the λi are called Lagrange multipliers).
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Theorem 43 (Karush-Kuhn-Tucker (KKT) conditions). Let x̄ be a local mini-

mum of (NLP) and suppose a constraint qualification (CQ) is satisfied (see below).

Then it holds:

(1) ∇ f (x̄) = ∑i∈I∩E λ̄i∇hi(x̄) ( ⇐⇒ ∇L
(

x̄, λ̄
)
= ~0); the gradient of the

cost function is a linear combination of the gradients of the constraint

functions.

(2) hi(x̄) ≥ 0 ∀i ∈ I.

(3) hi(x̄) = 0 ∀i ∈ E; (2) & (3): primal admissibility.

(4) λ̄i ≥ 0 ∀i ∈ I; sign condition for Lagrange multipliers of inequality

constraints.

(5) λ̄i · hi(x̄) = 0 ∀i ∈ I; complementarity condition.

Definition 74. A point x̄ satisfying (1)–(5) (together with a Lagrange multi-

plier ~λ ∈ R
|I|+|E| is called a KKT point.

Above definition is a generalisation of a critical/stationary point. At least

eight different versions of the KKT-Theorem may be found in books. Merg-

ing results from different books should be avoided.

The interest in local minima stems from engineering problems. In eco-

nomics we are usually interested in local maxima, however, min f (x) =

−max− f (x), so above theorem is applicable. Depending on the context

the Lagrange function might also be given as L(x, λ) = f (x) + ∑i λihi(x).

Finally, the inequality constraints are sometimes formulated as hi(x) ≤ 0,

but since hi(x) ≥ 0 ⇐⇒ −hi(x) ≤ 0 this is inconsequential as well.

Definition 75 (Constraint qualifications (CQ)).

v1: All constraint functions affine-linear, i.e. hi(~x) = ~aT
i ~x + bi ∀i ∈ I ∪ E.

(Linear programming)

v2: All active constraint functions at the point x̄ are affine linear, i.e.,

hi(~x) =~aT
i ~x + bi ∀i ∈ A(x̄) ⊆ I ∪ E.

v3: The set {∇hi(x̄) | i ∈ A(x̄) } is linear independent. (Linear indepen-

dence constraint qualification, LICQ)

Refer to books about optimisation for more CQs.

Example. Consider the (NLP)

min f (x1, x2) = (x1 − 2)2 + (x2 − 3)2

s.t. h1(x1, x2) = 2− x2 ≥ 0

h2(x1, x2) = x2 ≥ 0

and observe the the requirements of Theorem 43 are satisfied (all constraint

functions are linear). Let us plot the situation:
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x2

x10

1

2

3

2

The admissible set is shaded. The circular lines around (2, 3) are contour lines

of the cost function f , i.e. { (x1, x2) ∈ R
2 | f (x1, x2) = c } where c ∈ R is

constant. (For instance, the circle with the smallest radius is the contour line

with c = 0.25, meaning that all points on it have the same function value.)

Circles with bigger radius correspond to greater function values. Therefore

the black dot is the optimal solution.

Now let us compute what we just derived graphically. The Lagrange func-

tion is

L(x1, x2, λ1, λ2) = (x1 − 2)2 + (x2 − 3)2 − λ1(2− x1)− λ2x2.

Theorem 43 yields:

(1) ∇xL(x1, x2, λ1, λ2) =

(
2(x1 − 2)

2(x2 − 3) + λ1 − λ2

)

=

(
0

0

)

.

(2) 2− x2 ≥ 0

(3) not applicable

(4) λ1, λ2 ≥ 0

(5) λ1(2− x2) = 0, λ2x2 = 0

The first equation in (1) yields 2(x1 − 2) = 0 ⇐⇒ x1 = 2. From the second

equation together with (5) we have three cases:

– (5) is satisfied by λ1 = λ2 = 0, so x2 = 3, which is infeasible due to (2).

– (5) is satisfied by x2 = 2 and λ2 = 0, so λ1 = 2, which is feasible.

– (5) is satisfied by x2 = 0 and λ1 = 0, so λ2 = −6, which is infeasible

due to (4).

So we have one KKT point at (2, 2) with λ1 = 2 and λ2 = 0.

Example. Consider the following (NLP):

max x2 − x2
1

s.t. −(10− x2
1 − x2)3 ≤ 0

−x1 ≤ −2

x1, x2 ≥ 0

⇐⇒
−min x2

1 − x2

s.t. (10− x2
1 − x2)3 ≥ 0

x1 − 2 ≥ 0

x1 ≥ 0
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The Lagrange function is

L(x1, x1, λ1, λ2, λ3) = x2
1 − x2 − λ1(10− x2

1 − x2)
3 − λ2(x1 − 2)− λ3x2.

Since (10− x2
1 − x2)3 ≥ 0 implies 10− x2

1 − x2 ≥ 0 we know that 10− x2
1 ≥ 0

(for x2 is non-negative) and so x1 ≤ 4. Similarly we arrive at x2 ≤ 10.

Therefore the admissible set is closed and contained in [ 0, 4 ]× [ 0, 10 ]. Thus,

it is compact and global maxima and minima exist. The shaded area in the

following picture show the actual admissible set.

x2

x1

10

6

2 3

10− x2
1 − x2 = 0

x1 = 2

(2, 6)

Theorem 43 yields:

(1)
2x1 + 6λ1x1(10− x2

1 − x2)2 − λ2 = 0 (1.1)

−1 + 3λ1(10− x2
1 − x2)2 − λ3 = 0 (1.2)

(2)

(10− x2
1 − x2)3≥ 0 (2.1)

x1 − 2≥ 0 (2.2)

x1, x2≥ 0 (2.3)

(3) not applicable

(4) λ1, λ2, λ3 ≥ 0

(5)

λ1(10− x2
1 − x2)3 = 0

λ2(x1 − 2) = 0

λ3x2 = 0

Consider x̄ =
(

2
6

)
: The third equation of (5) implies λ3 = 0, however, plug-

ging into the second equation of (1) leads to the contradiction −1 = 0.

Let us go through several cases:

(a) A(x̄) = { }: λ1 = λ2 = λ3 = 0, contradicts (1.2).

(b) A(x̄) = { 3 }: λ1 = λ2 = 0, x2 = 0, using (1) we have x1 = 0, λ3 = −1,

a contradiction.

(c) A(x̄) = { 2 }: λ1 = λ3 = 0, x1 = 2, which contradicts (1).

(d) A(x̄) = { 2, 3 }: x1 = 2, x2 = 0, λ1 = 0, using (1) we have λ2 = 4 and

λ3 = −1, a contradiction.
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(e) A(x̄) = { 1 }: λ2 = λ3 = 0, plugging into the first (1.1) we have

3λ1(10 − x2
1 − x2)2 = 1. Multiplying this by 2x1 and subtracting it

from (1.2) of (1) yields 2x1 + 2x1 = 0. But x1 = 0 is infeasible.

(f) A(x̄) = { 1, 2 }: x1 = 2, x2 = 6 was already shown to be infeasible.

(g) A(x̄) = { 1, 3 }: x2 = 0, x1 =
√

10, λ2 = 0 leads to a contradiction in

(1.1).

(h) A(x̄) = { 1, 2, 3 }: no solution.

We still have not made any progress. Let us try a direct approach. Suppose

(2.1) is active. Then (10− x2
1 − x2)3 = 0 ⇐⇒ x2 = 10− x2

1. Substituting this

into our original problem yields:

max 10− 3x2
1 =: g(x1)

s.t. 10− x2
1 ≥ 0

x1 ≥ 2

The constraints imply 2 ≤ x1 ≤
√

10. Differentiating g we have

dg

dx1
(x1) = −4x1 ⇐⇒ x1 = 0,

which contradicts the constraints x1 ≥ 2 and is therefore not feasible. It

remains to check the border: g(2) = 2, g(
√

10) = −10. Thus there is a

global minimum at (−10, 0) and a global maximum at (2, 6).
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Ordinary differential equations

Example. Assume that the rate of change of the gross domestic product

(GDP) is proportional to the current GDP. This can be modeled by

x(t) GDP at time t
d
dt x(t) =: ẋ(t) rate of change at time t

g ∈ R proportionality constant

and the equation

ẋ(t) = g · x(t).
The solution is given by x(t) = c · egt for each c ∈ R. (Check: ẋ(t) =

cg · egt = g · (c · egt).) Additionally there might be some sort of boundary

condition, for example c = x(0). Since it pertains the initial time a boundary

condition at t = 0 is called initial condition.

In the following we often omit the dependent variable, e.g. ẋ = ẋ(t).

Example. For the equation ẋ = x + t

– both x = −t− 1 and x = et − t− 1 are particular solutions on R,

– the general solution is given by x = c · et − t− 1 for each c ∈ R,

– x = et − 1 is not a solution.

Definition 76. An ordinary differential equation (ODE) is an equation ẏ =

F(y, t) that connects the derivative of an unknown function y(t) and an ex-

pression F(y, t). If F(y, t) does not explicitly involve t, i.e. F(y, t) = F̃(y),

it is called autonomous or time-independent differential equation and non-

autonomous or time-dependent otherwise. An equation which involves deriva-

tives up to and including the i-th derivative is called an i-th order differential

equation.

Example. By Hooke’s law the force F(y) on a frictionless spring is propor-

tional to the displacement y of the spring from its equilibrium position. Since

force equals mass times acceleration we have, for mass 1

F(y) = −ay and ÿ = −ay,
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−3 −2 −1 0 1 2 3
−4

−2

0

2

4

t

x

Figure 5.1: Slope field of ẋ = x + t in gray and two particular solutions in

black.

a second order ODE with general solution y : R≥0 → R, t 7→ k1 cos(
√

a · t) +
k2 sin(

√
a · t), with free parameters k1 and k2. Check:

ẏ = −k1 sin(
√

a · t)
√

a + k2 cos(
√

a · t)
√

a

ÿ = −k1 cos(
√

a · t)a− k2 sin(
√

a · t)a

= −a(k1 cos(
√

a · t)− k2 sin(
√

a · t)) = −ay.

Initial conditions allow us to determine k1 and k2:

y(0) = c1 = k1 and ẏ(0) = c2 = k2

√
a

Definition 77. A solution of ẏ = F(y, t) on an interval I ⊆ R is every differ-

entiable function ϕ defined on I such that ϕ̇(t) = F(t, ϕ(t)) for all t ∈ I.

Remark. The direction in which the graph is going is known, we need to find

the graph itself: If x = x(t) is a solution of ẋ = x + t, then the slope of the

tangent to the graph at the point (t, x) is equal to x + t, e.g. slope 0 at (0, 0)

and slope 3 at (1, 2). We can use this to plot the slope field (direction field)

of the differential equation, see Figure 5.1: for every point (t, x) an arrow

indicates the direction in which the graph of the solution is going.

Theorem 44 (Fundamental theorem of differential equations). Consider the

initial value problem

ẏ = f (t, y), y(t0) = y0. (?)

Suppose that f is a continuous function at (t0, y0). There exists a C1 function

y : I → R defined on an open interval I = ( t0 − a, t0 + a ) about t0 such that

y(t0) = y0 and ẏ(t) = f (t, y(t)) for all t ∈ I. If f is C1 at (t0, y0), then the

solution y(t) is unique, i.e. any two solution of (?) must be equal to each other on

the intersection of their domains.
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Definition 78. A separable equation is a first order ODE in which the expres-

sion for ẏ = dy
dt can be factorised into a function of t times a function of

y:
dy

dt
= f (t) · g(y).

To solve a separable equation we rewrite it as

∫
1

g(y)
dy =

∫

f (t)dt

which is solved by G(y) = F(t) + C, where C is a constant.

If initial values y(t0) = y0 are given, we have:

∫ y

y0

1

g(ỹ)
dỹ =

∫ t

t0

f (t̃)dt̃

Example. Let
dy
dx = 6y2x and y(1) = 1/25. So

∫ y

1/25
ỹ−2 dỹ =

∫ x

1
6x̃ dx̃ ⇐⇒

[

−1

ỹ

]y

1/25

=
[
3x̃2
]x

1

⇐⇒ 25− 1

y
= 3x2 − 3 ⇐⇒ y(x) =

1

28− 3x2

Since 28− 3x2 = 0 yields x = ±
√

28/3 we have I ⊆ (−
√

28/3,
√

28/3 ) with

1 ∈ I. (y ≡ 0 violates the initial condition.)

Remark. An autonomous linear first order ODE

ẏ(t) = a · y(t) + b

with b ∈ R, a ∈ R \ {0} has the general solution

y(t) = −b/a + c · eat

(c ∈ R, constant).

A non-autonomous homogeneous linear first order ODE

ẏ(t) = a(t) · y(t) + b

is separable (choose F(t) =
∫ t

t0
a (t̃)dt̃) has the general solution

y(t) = c · eF(t)

(c ∈ R, constant).

A non-autonomous inhomogeneous linear first order ODE

ẏ(t) = a(t) · y(t) + b(t) (5.1)

has the general solution

y(t) = eF(t)

(∫ t

t0

b (t̃) · e−F(t̃)dt̃ + c

)

(5.2)

(c ∈ R, constant).
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Example. Let ẏ + y/t = t3, t0 = 1. So a(t) = −1/t and F(t) = − ln(t) −
ln(1) = − ln(t) (assuming t > 0). b(t) = t3, eF(t) = 1/t, e−F(t) = t. Therefore

∫ t

t0

t̃3 · t̃ dt̃ =
∫ t

1
t̃4 dt̃ =

[
t̃5

5

∣
∣
∣
∣

t

1

=
t5

5
− 1

5
.

Finally y(t) = (t5/5− 1/5 + c)/t = k/t + t4/5 with k := −1/5 + c, k ∈ R,

constant.

Observation. The general solution of (5.1) in addition to a particular solution

of (5.2) gives the general solution of (5.2).
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Inverse function theorem, 26
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gradient, 30

Hessian matrix, 30

indefinite, 18
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matrix, 4

adjoint, 19

characteristic polynomial, 14, 16

cofactor, 14, 19

column, 4

column space, 17

diagonal, 6, 16

diagonalizable, 16, 18

eigenvalue, 14–16, 18, 19

eigenvector, 16, 18

elementary, 15

elements, 4

equality, 4

idempotent, 7

identity, 6

inverse, 11

invertible, 15

kernel, 17

minor, 14

multiplication, 5

null, 7

order, 4

orthogonal, 15, 18

principal minor, 18

principal submatrix, 18

rank, 9

regular, 12, 16, 19, 20

row, 4

row space, 17

(row) stochastic, 19

scalar multiplication, 5

scalar product, 13, 14

singular, 12

square, 5

sum, 5

symmetric, 6, 18

trace, 5

transpose, 6

triangular, lower, 7

triangular, upper, 7

metric space, 21

boundary, 24

closed subset, 23

closure, 23

complete, 23

interior, 24

open subset, 23

negative definite, 18

negative semi-definite, 18

NLP

seenon-linear optimisation prob-

lem, 35

non-autonomous, 40

non-linear optimisation problem, 35

norm, 21

ordinary differential equation, 40

particular solutions, 40

pivot, 8

polyhedron, 35

polytope, 35

positive definite, 18

positive semi-definite, 18

quadratic form, 17

reduced row echelon form, 8

regular, 16

row echelon form, 8, 13, 17

Schwarz’ theorem, 27

separable equation, 42

sequence, 21

slope field, 41

Squeeze theorem, 22

stationary point, see critical point

subsequence, 23

supremum, 24

Taylor polynomial, 29, 30

time-dependent, 40

time-independent, 40

vector, 4

orthogonal, 18

scalar product, 13

vector space, 10, 21

basis, 11

bounded subset, 24

compact subset, 24

dimension, 17

norm, 13

equivalent, 21

span, 11
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