
Advanced Microeconomics I

Summer Term 2024



Organizational preliminaries

Prof. Dr. Stefan Napel
▶ Office hours: Monday, 2-4 pm;

please contact vwl4@uni-bayreuth.de (Heidi Rossner-Schöpf)

Downloads and information:
elearning.uni-bayreuth.de/course/view.php?id=40078

Classes by Dr. Alex Mayer & Sebastian Schröter w/ one week delay to lectures
(start: April 29/30, 2024; use week before to work on Mathematical Preliminaries PDF by yourself)

Optional Q&A sessions with student tutor Joshua Greubel

One-open-book exam will be posed in English;
can be answered in English or German
(same for optional midterm exam on June 5, 2024)

1

vwl4@uni-bayreuth.de
elearning.uni-bayreuth.de/course/view.php?id=40078


Textbooks

The reference (consider buying a used copy):
▶ Mas-Colell, Andreu, Michael D. Whinston, and Jerry R. Green (1995). Microeconomic

Theory. New York, NY: Oxford University Press.
(≡ MWG)

Other recommended textbooks:
▶ Jehle, Geoffrey A., and Philip J. Reny (2011). Advanced Microeconomic Theory, 3rd ed.

Amsterdam: Addison-Wesley.
▶ Rubinstein, Ariel (2012). Lecture Notes in Microeconomic Theory: The Economic Agent,

2nd ed. Princeton, NJ: Princeton University Press.
[updated in 2023 and free: http://arielrubinstein.tau.ac.il/]

▶ Varian, Hal R. (1992). Microeconomic Analysis, 3rd ed. New York, NY: W. W. Norton &
Company.
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Goals and structure

Goals of this course:
▶ Introduce key concepts of advanced microeconomic analysis
▶ Aid the self study of MWG
▶ Prepare for possible PhD studies:

we pick a level below a PhD program, but familiarize ourselves with the standard textbook
→ you may skip the small print and most proofs for now

▶ Structure follows MWG

3



Prospective schedule for lectures

# Date Topic Chs. in MWG

1 15.04. Introduction

2 22.04. Preference and choice 1.A–D

3 29.04. Consumer choice 2.A–F

4 06.05. Classical demand theory 3.A–E, G

5 13.05. Aggregate demand 3.I; 4.A–D

6 27.05. Choice under risk 6.A–D, F

7 03.06. Static games of complete information 7.A–E; 8.A–D, F

8 10.06. Dynamic games of complete information 9.A–B; 12. App. A

9 17.06. Games of incomplete information 8.E; 9.C

10 24.06. Competitive markets 10.A–G

11 01.07. Market power 12.A–F

12 08.07. Question session for exam (→ t.b.a.)
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. . . blood, toil, tears, and sweat

This course is different . . .
▶ Lectures will not provide a self-contained treatment of all material
▶ Strenuous self-study cannot be avoided

(workload still much lower than in a UK/US research MPhil/MSc program;
NB: 8 ECTS points associated with 8 h of homework /week, plus 4 h attendance!)

Mixture of slides and “chalk& talk”

Optional midterm exam on June 5, 2024:
▶ Two problems on topics of sessions #1 – #6,

each graded in a binary fashion (“+” or “#”)
▶ Each “+” earns 5 bonus points for this term’s 60-point final and re-sit exams

(but not: next year’s exams)

Most of what you learn in this course will be learned by doing problems,
i.e., preparing for weekly classes and exams
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1. Introduction

Microeconomics studies the behavior of (groups of) individuals or firms,
how they interact and bring about collective outcomes

We will look at models of
▶ preferences, consumer choice, demand, choice under risk
▶ strategic decision making (= game theory)
▶ perfectly and imperfectly competitive markets

Market failure, asymmetric information, and mechanism design

General equilibrium

Social choice and welfare
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Models

“Models” are simplified descriptions of a part of reality

Their purposes in economics include
▶ description per se
▶ explanation and prediction
▶ justification
▶ decision support

They can be represented in different ways, e.g.,
▶ verbally
▶ graphically or mechanically
▶ mathematically
▶ as software

All representations boil down to a system of assumptions, axioms, premises, or initial
conditions {A1, . . . ,An}
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Models

The system of assumptions, axioms, etc. should
▶ be logically consistent, irreducible, and comprehensible

(A. Einstein: “... as simple as possible, but not simpler!”)
▶ relevant for the model’s purpose, relate to reality, and have at least some empirical support

The advantage of stating {A1, . . . ,An} mathematically instead of in everyday language
or software is that the model is particularly

▶ concise and transparent
▶ easy to check for consistency
▶ amenable to formal manipulations and logical deduction

Mathematical models are constructed with manipulability in mind;
this implies a delicate trade-off with realism
(Danger: “Searching where the light is ...”)
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“Searching where the light is ...”

[cf. http://axispraxis.wordpress.com/2016/03/24/the-streetlight-effect-a-metaphor-for-knowledge-and-ignorance]
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Models and Economic Theory

Early philosophers of science (Hempel, Oppenheim) argued that the distinctive feature
of a theory (vs. a model) is:
at least some Ai is a universal law, i.e., a time and space-invariant, necessary
connection between certain phenomena

Such requirements would preclude any economic theory . . .

Social scientists have to contend themselves with restricted regularities or mere
tendencies (vs. laws of mechanics)

▶ e.g., that individuals can usually decide between two available options and mostly do so in
a consistent fashion

Economics is harder than physics because it involves interpretation of a reality created
by objects of study (individuals, firms, . . . ) who themselves base their actions on
individual interpretations of reality, possibly influenced by economic theory
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Do Economics, not Mathematics

Most microeconomic analysis uses mathematical language and techniques

We need to do the maths (and data analysis) because even trained economic intuition
is sometimes wrong:

▶ One obtains a ‘counter-intuitive’ result doing the maths/econometrics, and only facing it
realizes that some (ex post: intuitive) causal effects were overlooked

Strive to focus on the economics in what you read and do, even though the maths may
be more time-consuming

A good intuition about agents’ economic incentives is more useful than superb
knowledge of Kuhn-Tucker conditions or semidefiniteness of matrices, even in
optimization problems
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1.1 Example

Consider the following simple microeconomic problem:
▶ Julian wants to buy spoons and forks
▶ Each pair of one spoon and one fork gives Julian 1 unit of utility
▶ A spoon not matched with a fork gives him only a units of utility, where 0 ≤ a < 1/2;

a fork not matched with a spoon also gives a
▶ Let p1 be the price of spoons, p2 the price of forks,

and w the wealth that Julian plans to spend on spoons and forks
▶ Assume he wants to get the highest possible utility for his money

Find Julian’s demand functions for spoons and forks!
Assume 0 < p1 ≤ p2 and perfect divisibility
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Schedule for lectures

# Date Topic Chs. in MWG

1 15.04. Introduction

2 22.04. Preference and choice 1.A–D

3 29.04. Consumer choice 2.A–F

4 06.05. Classical demand theory 3.A–E, G

5 13.05. Aggregate demand 3.I; 4.A–D

6 27.05. Choice under risk 6.A–D, F

7 03.06. Static games of complete information 7.A–E; 8.A–D, F

8 10.06. Dynamic games of complete information 9.A–B; 12. App. A

9 17.06. Games of incomplete information 8.E; 9.C

10 24.06. Competitive markets 10.A–G

11 01.07. Market power 12.A–F

12 08.07. Question session for exam (→ t.b.a.)



2. Preference and choice

The basic constituent of most economic models is the neoclassical “economic man” or
homo economicus

He or she is a highly stylized model of real decision makers

“economicus” refers to “the economic way” of decision making, not to the context of
decisions

Broadly speaking, homo economicus is assumed to
▶ deliberately choose the most suitable means to his or her ends
▶ evaluate options according to their anticipated consequences

(decisions are made in the “shadow of the future”)
▶ weigh the costs and the benefits of a particular choice

. . . or rather behave “as if” he or she would be doing so
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Preliminary remarks

While the rationality embodied by homo economicus is the key assumption of most of
modern economics, it should not be taken too literally

Hardly any economist thinks that real people are as deliberate, future-oriented, and
clever as is conventionally assumed

Most would hold that people are behaving as if they were “economically rational”
sufficiently often to derive useful conclusions from correspondingly pragmatic models

See
▶ Ariely, Dan (2008). Predictably Irrational. London: Harper Collins.
▶ Kahneman, Daniel (2011). Thinking, Fast and Slow. New York: Farrar, Straus and

Giroux.

for illuminating accounts of the “biases” of real decision makers
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Choosing between several alternatives

Consider an agent who needs to choose between several actions and suppose
1 each action is associated with a particular outcome, and
2 these outcomes are all that the agent cares about

Denote the set of all possible, mutually exclusive outcomes / options / alternatives by X
▶ Options can be very concrete, like

X = {go to law school in Berlin, study economics in Bayreuth, . . . },
or, for us, abstract placeholders like X = {x , y , z}

Economics presumes that whenever choosing from a subset X ′ ⊆ X , the agent picks
an option x ⊆ X ′ which serves his or her goals best (whatever they may be ...)

⇒ If we observe that the agent chooses x from X ′, we conclude that x was among the
best options in X ′ for this agent (at least at the time of choosing)
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2.1 Preferences vs. choice rules

There are two main approaches to modeling choice behavior:
▶ Binary preference relations
▶ Choice rules

Preference relations are less general, but more handy
(additional restrictions make them even more handy, e.g., allow representation by a utility function)

Observing the choice of x when X ′ was available reveals that x is weakly preferred to
any other element y ∈ X ′ when a choice must be made from X ′

The preference approach entails the simplifying assumption:
x is weakly preferred to y independently of the presence or absence of any other
alternatives z ∈ X , i.e., also when a choice must be made from X ′′ ̸= X ′
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Preference relations

Given such context-independence, an agent’s full choice behavior is well-defined by her
choices from binary subsets X ′ = {x , y}
When x is weakly preferred to y , we write: x ≿ y

≿ gives (some) pairs of elements x , y ∈ X a specific connection;
it is known mathematically as a binary relation

A binary relation is formally just a subset of X × X ;
some authors write (x , y) ∈ ≿ instead of x ≿ y
(BTW: a function f : X → Y can similarly be viewed as a subset of X × Y )
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Other relations derived from ≿

If sometimes x and sometimes y is chosen out of X ′ = {x , y}, then the agent is said to
be indifferent between x and y , i.e.,

x ≿ y ∧ y ≿ x ⇔: x ∼ y

If the agent (weakly) prefers x over y and is not indifferent, he is said to strictly prefer
x over y , i.e.,

x ≿ y ∧ ¬(y ≿ x) ⇔: x ≻ y

x ≻ y is equivalent to saying:
“The agent never chooses y when x is available”
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Rational preferences

Economics does not care about why somebody prefers x to y ; neither does it proclaim
which option the agent should prefer

The common requirement for calling an individual rational is that her choices reflect
preferences that are “complete” and “transitive”

Complete means that for any two options x , y ∈ X , the agent either weakly prefers x
or weakly prefers y or both, i.e.,

∀x , y ∈ X : (x ≿ y) ∨ (y ≿ x)

Completeness reflects that the agent can reach a decision in any binary choice problem

Transitive means that a preference for x over y together with a preference for y over z
also entails a preference for x over z , i.e.,

(x ≿ y) ∧ (y ≿ z) ⇒ x ≿ z

Transitivity rules out cycles that would, e.g., preclude a decision from X ′ = {x , y , z}
22



Violations of transitivity

An argument against persistent intransitivity of real people is that one might (or the
market would) ruin them with a money pump:

▶ Suppose your colleague has intransitive preferences:

apple ≻ banana ≻ citrus fruit ≻ apple

▶ Give him an apple for free
▶ Then offer to sell him a citrus fruit for the apple and, e.g., 1 cent;

he will accept because he strictly prefers the citrus fruit
▶ Next sell him a banana for the citrus fruit and 1 cent
▶ Now sell him an apple for the banana and 1 cent, and repeat the cycle . . .

However, this ignores transaction costs, and the possibility that an intransitivity may
be corrected (only) if someone exploits it

Intransitivity is normal when alternatives are very finely graded:
∀k ∈ N0: coffee with k grains of sugar ∼ coffee with k + 1 grains of sugar
⇒ coffee without sugar ∼ coffee with 100g of sugar?
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2.2 Utility representation

If the set of alternatives X is finite (or countably infinite) and the agent has a
complete and transitive preference relation ≿ over it,
then the agent‘s preferences over X can be represented by a utility function u : X → R,
i.e., we can find real numbers u(x) such that

x ≿ y ⇔ u(x) ≥ u(y)

Note that if u(·) represents the agent’s preferences, then so does any v(·) which is a
strictly increasing transformation of u(·)
The latter implies that differences or ratios between utility levels for x and y do not
mean anything:
u(·) only allows conclusions about the order of x and y , and is therefore called an
ordinal utility function
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Utility representation

If the set of alternatives X is uncountably infinite, then completeness and transitivity of
a preference relation are not sufficient to guarantee existence of a utility representation

In particular, lexicographic preferences ≿L over bundles (x1, x2) ∈ R2
+ of two goods

defined by

(x1, x2)≻L(y1, y2) :⇔ x1 > y1 ∨
{x1 = y1 ∧ x2 > y2},

and

(x1, x2)∼L(y1, y2) :⇔ x1 = y1 ∧ x2 = y2

do not possess a utility representation
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Utility representation

A preference relation ≿ is called continuous :⇔
whenever xk ≿ y (resp. y ≿ xk) holds for all elements xk of a sequence {xk}k=1,2,...

with limit point x∗ then x∗ ≿ y (resp. y ≿ x∗) holds too

Continuity rules out that minimal changes flip the ordering of two options:
▶ Lexicographic preferences rank xk = (2 + 1/k, 1) strictly higher than y = (2, 2) for every

k = 1, 2, . . .
▶ The limit point x∗ = (2, 1), however, is ranked strictly lower than (2, 2)

A key result in decision theory:
If ≿ is a complete, transitive and continuous preference relation on an arbitrary set of
outcomes X , then

▶ ≿ can be represented by an ordinal utility function u : X → R
▶ u(·) can be chosen to be continuous

(but not necessarily also differentiable, or even C 1, C 2, etc.)
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Remarks

Economic rationality itself does not require existence of a utility representation of an
agent’s preferences

Only for convenience is economic rationality sometimes equated with utility-
maximizing behavior, but inaccurately so

In any case, assuming utility maximization does not require agents to “know their
utility function” and “try to maximize”;
as it happens, if their preferences satisfy completeness and transitivity (+ continuity),
they act exactly as if they did ...

Use of a particular utility function (e.g., u(x1, x2) = x1 + x2) amounts to an additional
assumption on top of that of a homo economicus
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Further remarks

Preferences are individual characteristics that economists take as given and fixed

We tend to ignore preferences’
▶ origin or causes
▶ intensity
▶ possible dynamics

There is, however, also economic research that investigates preference saliences or
patterns and drivers of preference change

The key challenge in the context of changing / reference-dependent preferences is the
welfare interpretation of outcomes
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2.3 Choice structures and choice rules

Recall that the move from observing choice x from X ′ towards a binary preference
relation entailed a presumption of context-independence regarding greater desirability
of x than y ∈ X ′

If one does not want to impose this restriction, one can work with so-called choice
structures

A choice structure (B,C (·)) has two ingredients:
▶ B ⊆ 2X is a family of nonempty subsets of X ;

elements B ∈ B are called budget sets,
B is meant to describe all choice experiments that could be posed to the decision maker,
or on which we have data

▶ The so-called choice rule or choice correspondence C (·) maps each budget set B ∈ B to a
nonempty subset C (B) ⊆ B;
it lists all alternatives that the decision maker might choose from B
(i.e., finds equally acceptable from B)
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Example

Suppose that X = {BT ,KU,N} and B = {{KU,N}, {BT ,KU,N}}
A possible choice structure is (B,C1(·)), where

▶ C1({KU,N}) = {KU}
▶ C1({BT ,KU,N}) = {KU}

→ Kulmbach is preferred location no matter what other alternatives are in the budget set

A possible choice structure is (B,C2(·)), where
▶ C2({KU,N}) = {N}
▶ C2({BT ,KU,N}) = {KU}

→ She prefers the location in the budget set which is second-closest to Bayreuth
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Weak Axiom

A common restriction on choice structures (B,C (·)), which rules out behavior of the
latter kind, is the weak axiom of revealed preference (WARP or WA):

▶ If x is chosen for a B ∈ B that also contains y ,
and y is chosen for another B ′ ∈ B that also contains both,
then x must be equally acceptable in B ′, i.e.,

x , y ∈ B, x ∈ C (B) and x , y ∈ B ′, y ∈ C (B ′) ⇒ x ∈ C (B ′)

We interpret the existence of a budget set B ∋ x , y with x ∈ C (B) as:
“x is revealed weakly preferred to y (for some budget set)”

So WARP more simply says:
If x is revealed weakly preferred to y , then y cannot be revealed strictly preferred to x
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Relation between preferences and choice rules (1)

Two natural questions arise about WARP:
1 If a decision maker has a rational preference ordering ≿, do her choices – when facing

budget sets in B – necessarily satisfy WARP?
2 If an individual’s choice behavior for budget sets B is captured by a structure (B,C (·))

that satisfies WARP, does a rational preference relation ≿ exist which is consistent with
these choices (i.e., which ‘rationalizes’ C (·) relative to B)?
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Relation between preferences and choice rules (2)

Both questions can basically be answered affirmatively:
1 A choice structure which is generated by a rational preference ordering ≿ automatically

satisfies WARP
2 That a choice structure (B,C (·)) satisfies WARP is sufficient for existence of a (unique)

preference relation ≿ that rationalizes it if B includes all subsets X ′ ⊆ X with |X ′| ≤ 3
(only then does WARP guarantee transitivity)

So, if choices are defined on all subsets of X and satisfy WARP, then the preference
and choice rule-based approaches to modeling behavior are equivalent

Preview: consumer decisions described by a demand function x(p,w) are defined only
for special subsets of X ; then stronger properties than WARP are needed to guarantee
that choices are rationalizable (in the microeconomic sense)
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Schedule for lectures

# Date Topic Chs. in MWG

1 15.04. Introduction

2 22.04. Preference and choice 1.A–D

3 29.04. Consumer choice 2.A–F

4 06.05. Classical demand theory 3.A–E, G

5 13.05. Aggregate demand 3.I; 4.A–D

6 27.05. Choice under risk 6.A–D, F

7 03.06. Static games of complete information 7.A–E; 8.A–D, F

8 10.06. Dynamic games of complete information 9.A–B; 12. App. A

9 17.06. Games of incomplete information 8.E; 9.C

10 24.06. Competitive markets 10.A–G

11 01.07. Market power 12.A–F

12 08.07. Question session for exam (→ t.b.a.)



3. Choice-based demand theory

Now study homo economicus as a consumer in a competitive market economy;
adopt a choice-based perspective first (↔ preference-based in 4.)

Choice of quantities of goods or services provided by the market, called commodities,
is subject to physical and economic constraints

Any particular quantity combination (x1, x2, . . . , xL) of L different commodities
corresponds to a point x in commodity space RL

Definition of the relevant commodities comes with great flexibility:
same good delivered at different points in time, different locations, or distinct ‘states
of the world’ are just different commodities

Physical restrictions on bundles that the individual can consume are reflected by
restricting RL to a consumption set X ⊆ RL
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Divisibility and price taking

For simplicity, we consider RL
+ as agents’ consumption set;

this is a convex set, i.e., we assume perfect divisibility

We also assume a complete market, i.e., every commodity i = 1, . . . , L is traded
(i.e., property rights are well-defined for every relevant good)

The considered consumer is presumed to be a price taker,
i.e., his or her individual decisions do not affect prices

Suppliers use linear pricing schemes, i.e., sell at a constant unit price,
e.g., because there is perfect competition
(vs. non-linear pricing: quantity discounts, two-part tariffs, ...)

For convenience, let the price of any good i be positive, i.e., pi > 0 for i = 1, . . . , L
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3.1. Walrasian budget sets

The economic constraint faced by the agent is that he or she must afford the selected
commodity bundle x ∈ RL

+, i.e., for a given price vector p ∈ RL
+ total expenditure

p · x := p1x1 + · · ·+ pLxL

cannot exceed wealth w > 0

The set of affordable, physically feasible bundles for given p and w is the consumer’s
Walrasian or competitive budget set

Bp,w := {x ∈ RL
+ : p · x ≤ w}

The consumer’s choice problem is thus:
“Choose a consumption bundle x from Bp,w”
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Budget hyperplane

The set {x ∈ RL : p · x = w} is known as the budget line;
or for L > 2 as the budget hyperplane;
it is the upper boundary of Bp,w

Its respective intercepts are w/pi , i.e., the maximal affordable quantity if only good i is
purchased

The fact that p · x = w and p · x′ = w for any two points x and x′ on the budget
hyperplane implies that p is orthogonal to it
[recall that the dot product of any vectors x, y ∈ RL satisfies x · y = |x| · |y| · cos (θ) where θ is the

angle between x and y; in particular, x · y = 0 iff x and y are orthogonal]
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3.2 Walrasian demand

Set BW = {Bp,w : p ∈ RL
++ ∧ w > 0} is just a particular family of budget sets

At least in principle, we can observe a consumer’s choices C (B) ⊆ B for any budget
set B = Bp,w ∈ BW

These choices are called the (Walrasian) demand of the consumer and we refer to

x(p,w) := C (Bp,w )

as the consumer’s Walrasian demand correspondence

We often focus on cases in which C (Bp,w ) is singleton-valued, i.e., the consumer picks
a unique element in any Walrasian budget set

x(p,w) is then called the Walrasian demand function
(w/o brackets around {x∗})
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Homogeneity of Walrasian demand

A function f : X → Y (or a correspondence f : X ⇒ Y ) between vector spaces X and
Y is called homogeneous of degree r :⇔ ∀λ > 0: ∀x ∈ X : f (λx) = λr · f (x)
Demand is homogeneous of degree zero iff x(λp, λw) ≡ x(p,w),
i.e., when prices and wealth all change by the same factor then demand does not
change (→ only relative prices matter)

We will assume that the individual cares only about the commodities, and doesn’t
suffer any “money illusion”

⇒ Choice depends only on which bundles are affordable;
so the fact that Bp,w ≡ Bλp,λw implies x(λp, λw) ≡ x(p,w)
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Homogeneity of demand and numeraire good

Given that we can scale prices and wealth up or down by λ > 0 without affecting
demand, it is often convenient to normalize such that w = 1 or such that pi = 1 for
some good i

In the latter case, all prices and wealth are expressed in units of good i , which is then
called the numeraire good
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Walras’ Law

We say that a Walrasian demand function (or correspondence) x(p,w) satisfies
Walras’ law or is budget balancing iff it is an element of the budget hyperplane for all
p and w, i.e.,

x = x(p,w) ⇒ p · x = w

(or x ∈ x(p,w))

Walras’ law says that the consumer fully expends his or her wealth

When understood in a broad way (e.g., as applying to the entire lifetime of an agent,
with bequests viewed as commodities, too), this is not very restrictive
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3.3 Comparative statics w.r.t. wealth

How do observed choices vary with changes in wealth and prices?

Examination of outcome changes caused by a change in underlying economic
parameters is known as comparative statics analysis

The wealth effect for good i at (p,w) is simply ∂xi (p,w)/∂w

Commodity i is normal at (p,w) if the wealth effect for it is positive, i.e., demand
increases in wealth;
i is inferior at (p,w) if the wealth effect is negative

If all commodities are normal at all (p,w), demand is called normal

If we fix prices p′ then x(p′,w) is called the consumer’s Engel function and xi (p
′,w) is

his or her Engel curve for good i ;
the image of x(p′,w) is known as the wealth expansion path

43



Comparative statics w.r.t. prices

Derivative ∂xi (p,w)/∂pk is the price effect of pk on demand for good i at (p,w);
the Jacobian matrix Dpx(p,w) collects these in a compact format

Good i is said to be a Giffen good at (p,w) if ∂xi (p,w)/∂pi > 0, i.e., an increase (drop)
in i ’s price raises (reduces) the demand for it

Preview: under WARP and Walras’ law, a commodity can only be Giffen if it is also
(very) inferior, e.g., a very low-quality good purchased by a poor consumer

We commonly plot xi (p,w) as a function of pi for fixed p−i and w ; the image of
xi (p,w) in, e.g., x1-x2-space when only pi is varied is known as an offer curve
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3.4 Minimal condition for rationalizing demand

BW = {Bp,w : p ∈ RL
++ ∧ w > 0} and x(p,w) define a choice structure

If x(p,w) is single-valued, i.e., a function, then WARP becomes:

p · x(p′,w ′) ≤ w ∧ x(p,w) ̸= x(p′,w ′) ⇒ p′ · x(p,w) > w ′

That is:
If x(p′,w ′) is affordable in price-wealth situation (p,w) but ignored, then choice of
x(p′,w ′) at (p′,w ′) requires that x(p,w) would blow the budget in situation (p′,w ′)

(if x(p,w) is revealed preferred to x(p′,w ′) then (p′,w ′) mustn’t be revealed preferred to x(p,w) ...

but choice of x(p′,w ′) at (p′,w ′) would reveal so if x(p,w) were also affordable at (p′,w ′))

NB:
WARP is not sufficient to conclude that demand can be rationalized by a preference
relation over commodity bundles (why?)
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Slutsky wealth compensation

A price change has two effects:
1 It alters the relative price of different commodities
2 It changes the consumer’s real wealth (affordability)

Weak axiom restricts demand changes in response to price changes when taking
affordability into account

One can isolate the effect of relative price changes by adjusting the budget in a way
that keeps the baseline bundle just affordable, i.e., consider w ′ = p′ · x(p,w)

This adjustment is known as a Slutsky wealth compensation, resulting in Slutsky
compensated price changes
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WARP ≈ compensated law of demand

If the Walrasian demand function x(p,w) is homogeneous of degree zero and satisfies
Walras’ law, WARP is equivalent to the compensated law of demand (CLD):

x(p,w) satisfies WARP
⇔ For any compensated price change from (p,w) to

(p′,w ′) = (p′,p′ · x(p,w))

we have
(p′ − p) · [x(p′,w ′)− x(p,w)] ≤ 0

with strict inequality whenever x(p′,w ′) ̸= x(p,w)

As a special case we have:

∆p = (p′ − p) = (0, . . . , 0,∆pi , 0, . . . , 0) implies ∆pi∆xi ≤ 0;

so price pi and compensated demand xi move in opposite directions

Question: Should the same be true for uncompensated demand?
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Substitution and income effects

Let us fix a reference bundle z = x(p0,w0) and look at the Slutsky compensated
demand function x s(p, z) ≡ x(p,p · z)
As prices vary, x s(p, z) changes; this change reflects a pure substitution effect:
the consumer responds to new relative prices, while his or her real wealth has stayed
constant (in the sense of z still being affordable)

A change ∆xi in uncompensated demand can be decomposed into such a (virtual)
substitution effect ∆x sub.i and the income effect ∆x inc.i from the (virtual) change in
income from p · z to w0

Looking at marginal price changes, i.e., taking the derivative of x si (p, z) ≡ xi (p,p · z)
w.r.t pk at p0, one obtains the Slutsky equation

∂x si (p
0, z)

∂pk︸ ︷︷ ︸
sik :=

=
∂xi (p

0,w0)

∂pk
+

∂xi (p
0,w0)

∂w
· xk(p0,w0)
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Slutsky matrix

These pure substitution effects (of a change in pk on demand for commodity i) can be
collected in an L× L-matrix, known as the substitution or Slutsky matrix S(p,w)
[= Dpx

s(p, z) with z = x(p,w)]

Multiplying sik = ∂x s
i (p, z)/∂pk with the change ∆pk for k = 1, . . . , L and adding these

changes up, we obtain the total change ∆xi caused by a compensated price change
∆p (infinitesimal units)

Doing this for all i = 1, . . . , L, we get the change in compensated demand
∆x = S(p,w)∆p caused by price change ∆p

The compensated law of demand, namely ∆p ·∆x ≤ 0, thus requires that

∆p · S(p,w)∆p ≤ 0

holds for any ∆p ∈ RL
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Negative semidefiniteness of Slutsky matrix

So the assumptions of Walras’ law, homogeneity of degree zero, and WARP (↔ CLD)
imply that above quadratic form is never positive,
i.e., S(p,w) is negative semidefinite
(mathematicians sometimes restrict the term to symmetric matrices; but symmetry of S(p,w) is not

implied by Walras’ law, WARP and homogeneity for L > 2)

Negative semidefiniteness requires that, in particular, si ,i = ∂x s
i /∂pi is non-positive for

every i (echoing that the compensated law of demand requires ∆pi∆xi ≤ 0);
that’s why ∂xi/∂pi = ∂x s

i /∂pi − ∂xi/∂w > 0 (i.e., i is a Giffen good) requires ∂xi/∂w < 0

Given that the virtual substitution effects ∂x s
i (p, z)/∂pk can be inferred from real and, at

least in principle, observable price and wealth effects at (p,w), the joint hypothesis of
a consumer’s behavior satisfying Walras’ law, homogeneity of degree zero, and WARP
can be tested empirically
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Remarks

Negative semidefiniteness of S(p,w) is a necessary implication of WARP (given
Walras’ law and homogeneity), but not yet sufficient to guarantee that a differentiable
demand function satisfies WARP
(sufficiency requires that ∆p·S(p,w)∆p < 0 holds strictly if ∆p is not proportional to p)

A theory of consumer demand based on the assumption of homogeneity of degree zero,
Walras’ law, and WARP is a bit less restrictive than one based on rational preference
maximization;
as we’ll see in the next chapter, rational preferences force the Slutsky matrix to be
symmetric at all (p,w)
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4. Preference-based demand theory

The classical approach to consumer theory tries to explain demand by rational
preferences ≿ over commodity bundles
[vs. description of choices from Walrasian budget sets by (BW , x(·))]

We’ll assume that ≿ can be represented by a utility function u, and that u is
sufficiently “smooth”/differentiable

A rational consumer’s demand can be seen as the result of
▶ maximizing utility under the constraint that a given budget is not blown

or of
▶ minimizing expenditure under the constraint of a target utility level

The latter perspective will be useful for comparing individual welfare across different
price vectors (e.g., policy interventions)

53



4.1 Preference relations and utility

Many qualitative properties of ≿ imply analogue properties of u:

- ≿ is strictly monotone :⇔ {y ≥ x ∧ y ̸= x ⇒ y ≻ x}
⇔ u is strictly increasing

- ≿ is locally nonsatiated :⇔ ∀x ∈ X : ∀ϵ > 0 : ∃y ∈ Uϵ(x) : y ≻ x;

this is implied by monotonicity

- ≿ is convex :⇔ upper contour sets {y ∈ X : y ≿ x} are convex

⇔ {y ≿ x ∧ z ≿ x ⇒ ∀α ∈ (0, 1) : αy + (1− α)z ≿ x}
⇔ u is quasiconcave∗

- ≿ is strictly convex :⇔ {y ≿ x ∧ z ≿ x ∧ y ̸= z ⇒ ∀α ∈ (0, 1) : αy + (1− α)z ≻ x}
⇔ u is strictly quasiconcave

∗ :⇔ upper level sets {x ∈ X : u(x) ≥ a} are convex for all a ∈ R
⇔ ∀x ̸= y : ∀λ ∈ (0, 1) : u(λx+ (1− λ)y) ≥ min {u(x), u(y)}
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4.1 Preference relations and utility

- ≿ is homothetic :⇔ {x ∼ y ⇒ ∀α ≥ 0 : αx ∼ αy}
⇔ ∃u : u is homogeneous of degree 1∗

- ≿ is quasilinear w.r.t. good i

:⇔ {good i is desirable∗∗ ∧
x ∼ y ⇒ ∀α ∈ R : (x+ αei ) ∼ (y + αei )}

⇔ ∃u : u(x) = xi + ϕ(x−i )

∗: ⇔ ∀x : ∀λ > 0 : u(λ · x) = λ · u(x)
∗∗: ⇔ ∀x : ∀α > 0 : (x+ αei ) ≻ x
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4.2 Utility maximization problem

If all pi > 0 and u is continuous, the consumer’s utility maximization problem

max
x≥0

u(x) s.t. p · x ≤ w (UMP)

has a solution (→extreme value theorem):
the consumer’s (Walrasian or Marshallian) demand x(p,w)

Assume u represents locally nonsatiated preferences ≿ then x(p,w)
▶ is convex-valued if u is quasiconcave (≿ convex)
▶ is singleton-valued, i.e., a function, and continuous at all (p,w) > 0 if u is strictly

quasiconcave (≿ strictly convex)
▶ satisfies Walras’ law and is homogeneous of degree 0

NB: Lagrange multiplier in (UMP) is the marginal utility of wealth

The utility value of (UMP), v(p,w) := u(x(p,w)), is the consumer’s indirect utility
function
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4.3 Expenditure minimization problem

The expenditure minimization problem

min
x≥0

p · x s.t. u(x) ≥ û (EMP)

is related to (UMP), often called its “dual problem”

Its cost value e(p, û) is the consumer’s expenditure function

Analogously to a firm’s cost function, if u is continuous and ≿ locally nonsatiated then
e(p, û) is strictly increasing in û, homogeneous of degree 1 in p, nondecreasing in pi ,
and weakly concave in p
(intuition for the latter: 1. raise expenditure linearly by sticking to the old consumption quantities at

new prices; 2. lower costs by re-optimizing)

Note that e(p, v(p,w)) = w and v(p, e(p, û)) = û
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Hicksian Demand

(EMP)’s solution bundle(s) constitute the Hicksian demand (or Hicks compensated
demand) h(p, û)

For strictly convex ≿, h(p, û) is a function;
it is homogeneous of degree zero in p, and satisfies the compensated law of demand

(p′ − p)[h(p′, û)− h(p, û)] ≤ 0

Goods l and k are called substitutes if ∂hl (p,û)
∂pk

> 0

Goods l and k are called complements if ∂hl (p,û)
∂pk

< 0
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4.4 Hicksian demand and the expenditure function

Even though Hicks compensation (keeping utility constant) and Slutsky compensation
(keeping the old bundle affordable) produce different demand changes for a discrete
price change, they coincide for marginal price changes

In particular, the Slutsky matrix S(p,w) equals the Jacobian of both x(p,p · x(p,w))
and h(p, v(p,w)) w.r.t. p

Note that e(p, û) = p · h(p, û) implies

∂e(·)
∂pi

= hi (p, û)

(where [+
∑

pj ·
∂hj
∂pi

] = 0 because (h∗
1 , . . . , h

∗
L) is chosen optimally, i.e., pj = λ−1 · ∂u

∂xj

∣∣
xj=hj (·)

, and so

[. . . ] equals λ−1· total utility change from quantity adjustment which, for constant û, must be zero)

So the marginal expenditure change that is required to keep utility constant after a
change of pi is just equal to current quantity consumed of good i
(this mimicks Shepard’s lemma in the theory of production)
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Symmetry of (UMP)/(EMP)-implied Slutsky matrix

Assuming e(p, û) is twice continuously differentiable, we have

∂2e(·)
∂pi∂pj

=
∂hi (·)
∂pj

=
∂hj(·)
∂pi

or in matrix notation
D2
pe(p, û) = Dph(p, û) = S(p, e(p, û))

So the Hesse matrix D2
pe(p, û) = S(p, e(p, û)) is symmetric,

i.e., the Slutsky matrix is symmetric

Since e(p, û) is concave in p, S(p,w) must moreover be negative semidefinite

⇒ Preference-based (or utility-maximizing) demand implies negative semidefiniteness and
symmetry of the Slutsky matrix;
hence it is more restrictive than choice-based demand satisfying Walras’ law, WARP
and homogeneity of degree zero
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Remarks

Revealed choice-based demand can be rationalized if it satisfies Walras’ law and
WARP (⇒ zero-homogeneity) and has a symmetric substitution matrix
(latter is equivalent to satisfying Houthakker’s SARP instead of WARP)

That the derivative of (EMP)’s value function is simply (EMP)’s solution vector
cannot have a direct equivalent in the (UMP):
indirect utility v(p,w) is ordinal while x(p,w) is cardinal

But there exists a close analogue, in which marginal (indirect) utility is “normalized”,
known as Roy’s identity:

xi (p,w) = −
∂v(p,w)

∂pi
∂v(p,w)

∂w

This makes indirect utility functions convenient to work with:
demand can be computed w/o solving an optimization problem
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4.4 Individual welfare evaluation

We can evaluate whether a consumer is better off under price vector p′ or p′′ by
checking if v(p′,w)− v(p′′,w) is positive or negative

Recall that we obtain an equivalent (indirect) utility function ũ (ṽ) if we apply a
strictly increasing transformation to u (v);
e.g., e(p′, v(p,w)) is also an indirect utility function

It is money metric: it evaluates p-vectors by the euro amount that the consumer would
need to get (p,w)-situation utility under fixed reference prices p′:

▶ If under p′, say, 100¿ would be needed to obtain utility v(p0,w) while 120¿ would be
needed to obtain v(p1,w), then welfare can, loosely speaking, be said to be 20¿ higher
for p1 than for p0
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Compensating variation

Suppose we want to use e(p′, v(p,w)) in order to quantify the change in a consumer’s
welfare caused by going from p0 to p1: what should be the reference price p′?

One natural choice is p′ = p1, i.e., we use new prices as our reference

The change CV (p0,p1,w) := e(p1, v(p1,w))− e(p1, v(p0,w)) = w − e(p1, v(p0,w))
is known as the compensating variation

It measures the welfare effect of p0 → p1 on the consumer by answering the question:
How much money would need to be paid to the consumer (could be extracted from
her) under the less (more) favorable p1 in order for her to be indifferent to the change,
i.e., to feel fully compensated in the new situation?
[a negative sign indicates: without compensation, the consumer is worse off ...]
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Equivalent variation

Another natural choice is p′ = p0, i.e., we use old prices as our reference

The change EV (p0,p1,w) := e(p0, v(p1,w))− e(p0, v(p0,w)) = e(p0, v(p1,w))− w
is known as the equivalent variation

It measures the welfare effect of p0 → p1 on the consumer by answering the question:
How much money would need to be paid to the consumer (could be extracted from
him) under p0 in order for him to be indifferent to the change to a more (less)
favorable p1, i.e., what is the cash equivalent of the welfare change from a pre-change
perspective?
[here a negative sign indicates: consumer is willing to pay for preventing change ...]
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Consumer surplus

If p0 and p1 differ only in the price of a normal good i then

CV (p0,p1,w) < ∆CS < EV (p0,p1,w)

where ∆CS is the change in (Marshallian) consumer surplus

CS adds up marginal willingness to pay for all units of good i (from 0 up to xi (p,w))
and subtracts the actual payment for xi (p,w):

▶ Denote by pi (xi ) good i ’s price s.t. consumer would buy xi units (for given p−i and w)
▶ She’d strictly prefer to buy the last marginal unit of total xi if pi < pi (xi )

but is indifferent if pi = pi (xi )
=⇒ MWTPi (xi ) = pi (xi )

Remarks:
As MWTPi (xi ) and ∆CS relate to uncompensated demand, their interpretation is
obscured by income effects and induced surplus changes for other products;
if multiple prices change, product-specific CS-changes cannot meaningfully be added
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CV, EV, and consumer surplus

If there is no wealth effect for good i (e.g., ≿ is quasilinear w.r.t some good j ̸= i , so
that any extra utility from w ↑ comes via xj ↑), then hi (p, u

1) = hi (p, u
0) and all three

measures coincide
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5. Aggregate demand

Aggregate demand in an economy is readily obtained by adding individual demand
x i (p,w i ) across all individuals, i.e.,

x(p,w1, . . . ,w I ) =
∑
i

x i (p,w i )

Tracking vector (w i , . . . ,w I ) in, e.g., comparative static analysis is cumbersome;
one is tempted to work with aggregate wealth w =

∑
i w

i and to pretend that x(p,w)
is the demand of a single ‘representative’ agent

This raises questions:
▶ When is it possible to work with w instead of the full wealth distribution (w1, . . . ,w I )?
▶ Assuming that individual demands are preference-based and (p,w) determines aggregate

demand, are the choices x(p,w) compatible with existence of a single rational
representative consumer?

▶ Can the representative consumer’s (money-metric) indirect utility function be used for
welfare statements?
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5.1 When doesn‘t the wealth distribution matter?

Total demand x(p,w1, . . . ,w I ) =
∑

i x
i (p,w i ) can be expressed as a function x(p,w)

of total wealth w =
∑

i w
i only in special cases

Distribution independence requires that individual wealth effects exactly cancel out as
we shift ∆w between consumers i and j , i.e.,

∂x ik
∂w

∣∣∣
(p,w i )

=
∂x jk
∂w

∣∣∣
(p,w j )

for all k and arbitrary i , j ,w iand w j

This necessitates that consumers (for the relevant wealth range) have parallel straight
lines as their wealth expansion paths

That turns out to be equivalent to each ≿i admitting a utility representation s.t.
indirect utility functions are of the Gorman form

vi (p,w
i ) = ai (p) + b(p) · w i

with identical wealth multiplier b(p) for all i
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Cases when x(p,w 1, . . . ,w I ) = x(p,w)

This is the case (mainly) if
▶ all ≿i equal the same homothetic ≿

(e.g., Cobb-Douglas, perfect substitutes, or complements)

or
▶ all ≿i are quasilinear w.r.t. the same good k and we only consider sufficiently big wealth

levels

But we can also, trivially, drop (w1, . . . ,w I ) and simply write x(p,w) if each w i can
be expressed as a function w i (p,w) of p and w
(e.g., because of wealth redistribution according to a fixed rule, or as an empirical ‘regularity’)
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5.2 Aggregate demand
?
= demand of a single ≿

Even when
∑

i x
i (p,w i ) = x(p,w):

that each x i (p,w i ) satisfies WARP, or results from a rational ≿i , does not guarantee
that

∑
i x

i (p,w i ) satisfies WARP, or comes from a ‘representative’ rational ≿

WARP (=̂ compensated law of demand) doesn‘t ‘aggregate’:
a price-wealth change that is compensated for the aggregate may fail to be
compensated for some individuals ...

The stronger uncompensated law of demand (ULD)

(p′ − p) · [x i (p′,w i )− x i (p,w i )] ≥ 0

does aggregate when w i ≡ αi · w
So, if all x i (·) satisfy ULD (and hence also CLD), the x(·)-induced choice structure will
satisfy WARP (example: all ≿i are homothetic)
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Positive representative consumer

We say that a positive representative consumer exists for a given economy if one can
find a fictional individual whose optimal behavior would result in aggregate demand
x(p,w1, . . . ,w I ) if she could spend the society‘s budget w =

∑
w i

Existence requires that
▶ distribution (w1, . . . ,w I ) doesn’t matter, so that x(p,w1, . . . ,w I ) = x(p,w)

and
▶ x(p,w) satisfies WARP

(in fact, even Houthakker‘s SARP)

Note that it is also possible that aggregate demand satisfies more stringent
‘consistency requirements’ than individual demands do: individual violations of, say,
ULD may ‘average out’
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5.3 Aggregate welfare evaluation

A social planner, who evaluates different (p,w)-situations for society as a whole may
plausibly consider a (Bergson-Samuelson) social welfare function W : RI → R which is
defined on (indirect) utility vectors (u1, . . . , uI ) and is non-decreasing in every ui
Prominent examples:

▶ utilitarian welfare W U(u1, . . . , uI ) =
∑

i ui
▶ ‘Rawlsian’ welfare W R(u1, . . . , uI ) = min{u1, . . . , uI}

Such a social aggregation rule implicitly requires interpersonal comparability of utility
or an ‘all individuals are alike’ assumption
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Normative representative consumer

To what extent can social welfare evaluation be simplified to individual welfare
evaluation for the representative consumer?

Answer depends on the considered social welfare function

The positive representative consumer with preferences ≿ is called a normative
representative consumer relative to social welfare function W (·) if the value function
W ∗(p,w) of the planner‘s welfare maximization problem

max
w1,...,w I

W (v1(p,w
1), . . . , vI (p,w

I ))

s.t.
∑

w I ≤ w

is an indirect utility function for ≿, i.e., if the representative consumer‘s demand
corresponds to the aggregate demand∗ which would result from utility-maximizing
individual demands after an optimal wealth redistribution
(∗: apply Roy’s identity to W ∗(p,w))
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Welfare vs. normative representative consumer

If a normative representative consumer exists, we can, in principle, say that p0 → p1 is
socially beneficial or detrimental by looking at CV (p0,p1,w),EV (p0,p1,w), or ∆CS
for that consumer

But: w ’s optimal distribution (w1∗, . . . ,w I∗), which maximizes W (·), generally
depends on p;
hence, saying “p0 → p1 is socially beneficial because ∆CS > 0” is only warranted in
the sense that there exists a redistribution scheme s.t. welfare is higher under p1

(“potential welfare” W ∗(p,w) is higher while actual welfare W (v1(p,w
1), . . . , v I (p,w I )) may be lower

for p = p1 than p = p0 if wealth is not redistributed)
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Existence of a normative representative consumer

Conditions for existence of a positive representative consumer were already very
demanding

And if a positive representative consumer happens to exist, there is no guarantee that
he is also a normative one for the considered welfare function W (·);
it is even possible that his preferences have no normative content for any social welfare
function

However, if all consumers have indirect utility of the Gorman form with identical b(p),
then the positive representative consumer also is a normative one
(the Gorman form imposes sufficient structure for v(p,w) =

∑
i ai (p) + b(p) · w to be a strictly

increasing transformation of the planner’s value function for any social welfare function W (·))
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6. Choice under risk and uncertainty

Lecture 2 considered preferences and choice w/o specific assumptions re. the
considered alternatives {x1, x2, . . . };
they might involve risk, uncertainty, different points in time, space, etc.

We now specifically consider risky alternatives, i.e., options associated with known
objective probability distributions over deterministic outcomes (= lotteries)
(vs. uncertain / ambiguous alternatives = prospects)

One may distinguish between simple lotteries L = (π1, . . . , πN) over deterministic
outcomes Y = {y1, . . . , yN}, and compound lotteries (‘lotteries over lotteries’)

From a consequentialist perspective, a compound lottery can be equated with the
simple lottery which it induces; we therefore focus on the set ∆(Y ) of simple lotteries
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6.1 Expected utility representations

We know that if an agent has complete, transitive and continuous preferences ≿ over
the space ∆(Y ) of all (simple) lotteries L, then ≿ can be represented by a utility
function U : ∆(Y ) → R

Here, continuity may, e.g. be simplified to:

∀L, L′, L′′ : {α ∈ [0, 1] : αL⊕ (1− α)L′ ≿ L′′} and

{α ∈ [0, 1] : L′′ ≿ αL⊕ (1− α)L′} are closed sets

The function U(·) which maps each distribution L to a number may be highly
complicated and unwieldy (e.g., involve a “Choquet integral” w.r.t. a “capacity” derived from L)

However, if ≿ additionally satisfies the von Neumann-Morgenstern independence axiom

∀L, L′, L′′ : ∀α ∈ (0, 1) : L ≿ L′ ⇔ αL⊕ (1− α)L′′ ≿ αL′ ⊕ (1− α)L′′,

then U(·) can be chosen to have a simple functional form
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Von Neumann-Morgenstern expected utility

In particular, U(·) can be chosen to have the v.N.-M.-expected utility form, that is:
there exists a (Bernoulli) utility function u : Y → R defined only for deterministic
outcomes y ∈ Y such that:

U(L) =
∑

πi · u(yi ) = EL[u(y)] [=

∫
u(y)dL(y)]

≿’s Bernoulli utility function u(·) is unique up to an order-preserving affine
transformation, i.e.,

u(·) can be chosen as Bernoulli utility function for ≿
⇔ αu(·) + β for α > 0 can also be chosen

u(·) is a cardinal utility function over deterministic outcomes:
u(x)− u(y) > u(z)− u(w) > 0 now has the interpretation that x is a bigger
improvement on y than z is on w :

▶ one could mix x with a greater probability for a bad outcome q and the agent still prefers
this to y ... than one could mix z with q and retain preference over w
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Remarks on independence axiom

Requiring “independence” when “adding” lottery L′′ to L and to L′ makes sense since
there is no (obvious) complementarity or substitutability across distinct y -outcomes

An agent whose ≿ violates independence may be “Dutch-booked”, i.e., some money
can be extracted from her at no risk:

▶ Suppose L1 ≻ L2, but αL⊕ (1− α)L1 ≺ αL⊕ (1− α)L2
▶ Let her own αL⊕ (1− α)L1, while you own αL⊕ (1− α)L2
▶ Trade lotteries with her, collect a fee, and wait
▶ If L isn’t realized, then trade L1 for L2 and collect another fee
⇒ Your position is exactly as without the trades (L with prob. α, L2 with prob. 1− α), but

you additionally collect a fee one or two times

By independence, L ∼ L′ ⇒ (i) L ∼ αL⊕ (1− α)L′ and

(ii) αL⊕ (1− α)L′′ ∼ αL′ ⊕ (1− α)L′′

for all α ∈ [0, 1] and any L′′

⇒ ≿’s indifference curves are straight parallel lines in the probability simplex
(unless the agent is indifferent between all outcomes)
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Allais paradox

Though normatively appealing, real people frequently violate
the independence axiom

This is illustrated, e.g., by the Allais paradox:
For (y1, y2, y3) = (2500N, 500N, 0N) many people reveal

1 L1 = (0, 1, 0) ≻ L2 = (0.1, 0.89, 0.01)
2 L3 = (0, 0.11, 0.89) ≺ L4 = (0.1, 0, 0.9)

If this satisfied the v.N.-M. axioms, we could choose u(0N) = 0, and then infer
▶ from (1): u(500N) > 0.1·u(2500N)+0.89·u(500N) ⇔ [1−0.89]·u(500N) > 0.1·u(2500N)
▶ from (2): 0.11 · u(500N) < 0.1 · u(2500N)

[L1 and L2 lie parallel to L3 and L4 in the probability simplex; so 1st choice fixes 2nd one
under v.N-M. axioms: all indifference lines either have greater, smaller, or same slope as
these two lines]
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6.2 Money lotteries and risk attitudes

Consider lotteries over interval [a,∞) of final wealth levels as described by random
variable X with cumulative distribution function F (x) = Pr(X ≤ x), and v.N.-M.
utility function U(·) with increasing Bernoulli utility u(·) such that EF [u(X )] is finite

The agent is said to be
▶ risk neutral ⇔ she is indifferent between lottery F and receiving EF [X ] for sure,

i.e., ∀F : EF [u(X )] = u(EF [X ])
▶ (strictly) risk averse ⇔ she (strictly) prefers EF [X ] for sure to F
▶ (strictly) risk loving ⇔ she (strictly) prefers F to EF [X ] for sure

By Jensen‘s inequality, u is concave iff∫
u(x) dF (x) ≤ u

(∫
x dF (x)

)
So (strict) risk aversion is equivalent to (strict) concavity of u

It is also equivalent to the certainty equivalent, i.e., sure payment c(F , u) that renders
agent indifferent to F , being (strictly) smaller than EF [X ]
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Quantifying and comparing risk aversion

Risk attitudes of two individuals, or the same individual at different levels of wealth x
can be compared by the Arrow-Pratt coefficient of absolute risk aversion

rA(x ; u) = −u′′(x)

u′(x)

u2(·) is more risk averse than u1(·)
⇔ rA(x ; u2) ≥ rA(x ; u1) for all x
⇔ c(F ; u2) ≤ c(F ; u1) for any lottery F
⇔ u2 is “more concave” than u1, i.e., there exists an increasing concave transformation k(·)

s.t. u2(x) = k(u1(x))
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Common assumptions about risk aversion

It is often plausible to assume that u(·) has decreasing absolute risk aversion in wealth
(DARA), i.e., that rA(x ; u) decreases in x
Moreover, one often assumes that u(·) has nonincreasing relative risk aversion, i.e., the
coefficient of relative risk aversion

rR(x ; u) = −x · u
′′(x)

u′(x)

is constant or decreasing (CRRA or DRRA)
This captures the regularity that, as an individual becomes richer, a greater absolute
amount is invested in risky assets (DARA), and this amount corresponds to a weakly
greater share of total wealth (CRRA or DRRA)
Remarks:

−rA(x ; u) ≡ λ ̸= 0 (CARA) ⇔ u(x) = a1 − a2 · e−γx with a2 > 0

−rR(x ; u) ≡ δ (CRRA) ⇔ δ = 1 : u(x) = a1 + a2 · ln(x)
δ ̸= 1 : u(x) = a1 + a2 · x1−δ
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(Partial) orderings of random variables

Any two agents, who like higher x better, agree that lottery F1 is better than
lottery F2 if F1(x) ≤ F2(x) for all x ,
i.e., F1 places less probability on small realizations of X than F2

⇔ F1 first-order stochastically dominates F2

Any two risk averters agree that lottery F1 is better than lottery F2
if F1 and F2 have the same mean (

∧
= expected value) and F2 can be generated from F1

by shifting probability towards the extremes

⇔ F2 is a mean-preserving spread of F1

F2 being a mean-preserving spread of F1 is a special case of:
F1 second-order stochastically dominates F2
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6.3 Subjective probability theory

If agents choose between uncertain prospects for which no objective probabilities are
given, their behavior may still be represented in an “as-if”-fashion as expected utility
maximization for subjective probabilities (π̃1, . . . , π̃N)

The key requirements for this to be possible is Savage‘s sure thing principle (STP):

the ranking of two prospects P1 and P2 (
∧
= mappings from states of the world to, e.g,

wealth) depends only on provisions for states in which P1 and P2 actually differ

In particular,

P1:
s1 s2 s3
x y z

≿ P2:
s1 s2 s3
x ′ y ′ z

if and only if

P3 :
s1 s2 s3
x y z ′

≿ P4:
s1 s2 s3
x ′ y ′ z ′
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Ellsberg paradox

Intuitively reasonable choices under uncertainty can violate subjective expected utility
maximization (e.g., because the latter cannot account for ambiguity aversion)

Example:
Suppose a ball is drawn from an urn with 30 red balls, and 60 white or blue balls in
unknown proportion

- Many people strictly prefer P1 in
P1: 100¿ for red, 0¿ otherwise

vs. P2: 100¿ for blue, 0¿ otherwise
▶ And they strictly prefer P4 in

P3: 100¿ for red or white, 0¿ otherwise,
vs. P4: 100¿ for blue or white, 0¿ otherwise

The first choice indicates π̃blue < 1/3 = π̃red;
the second one indicates 2/3 > 1− π̃blue ⇔ π̃blue > 1/3
[Homework: find violation of STP if P1 ≻ P2 and P3 ≺ P4]
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# Date Topic Chs. in MWG

1 15.04. Introduction

2 22.04. Preference and choice 1.A–D

3 29.04. Consumer choice 2.A–F

4 06.05. Classical demand theory 3.A–E, G

5 13.05. Aggregate demand 3.I; 4.A–D

6 27.05. Choice under risk 6.A–D, F

7 03.06. Static games of complete information 7.A–E; 8.A–D, F

8 10.06. Dynamic games of complete information 9.A–B; 12. App. A

9 17.06. Games of incomplete information 8.E; 9.C

10 24.06. Competitive markets 10.A–G

11 01.07. Market power 12.A–F

12 08.07. Question session for exam (→ 30.07.24)



7. Static games of complete information

GT ≡ multiperson decision theory

Each agent’s utility possibly depends on actions of other agents; optimal decisions thus
depend on individual beliefs about other agents’ choices (which depend on their beliefs)

GT works with models of real-life situations, called “games”;
to these, it applies “solution concepts”

GT helps to understand how decision makers interact if they are rational and reason
strategically, i.e., if they pursue a well-defined objective and make optimal use of their
knowledge about other decision makers

Illustration by “70%-Beauty Contest game”:
▶ Submit a number si ∈ [0; 100]
▶ We’ll compute the average s̄ = 1/n ·

∑
si

▶ The person(s) whose number is closest to 0.7 · s̄ receives (share) the prize
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Some distinctions

We focus on non-cooperative GT: [↔ cooperative GT; evolutionary GT; ...]

players may communicate but cannot commit to any agreed action;
order of moves and players’ information is explicitly specified

Players’ information in a game can be
▶ complete:

all know the game’s structure and everybody’s preferences
(though maybe not all of others’ actions prior to a move)

▶ incomplete:
at least one player lacks information, e.g., about others’ preferences
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Some distinctions

A non-cooperative game can be
▶ in normal form or static or simultaneous-move:

players choose a strategy (= a complete plan of action covering all contingencies) once
and “simultaneously”

▶ in extensive form or dynamic or sequential-move:
players act sequentially based on perfect or imperfect information about what has
happened so far

An extensive form game can be translated into normal form, and vice versa;
dynamic information is often useful, but sometimes also distracting
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A book (just in case you get hooked ...)

PDF version can be downloaded for free by UBT students:
https://link.springer.com/content/pdf/10.1007/978-3-642-31963-1.pdf

Einführung in  
die Spieltheorie

Manfred J. Holler
Gerhard Illing
Stefan Napel

8. Auflage
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7.1 Basic notation and preliminaries

Notation:
▶ N = {1, 2, . . . , n} : set of agents or players
▶ Si : set of (pure) strategies available to player i
▶ si ∈ Si : a strategy of player i
▶ S ≡ S1 × · · · × Sn : strategy space of the game
▶ s = (s1, . . . , sn) ∈ S : a strategy profile
▶ s−i = s1, . . . , si−1, si+1, . . . , sn : profile of all except player i ’s strategies
▶ S−i ≡ S1 × . . .× Si−1 × Si+1 × . . .× Sn
▶ ui : S → R : player i ’s v.N.-M. utility or payoff function
▶ u : S → Rn with u(s) ≡ (u1(s), . . . , un(s))
▶ ∆(Si ) : set of all probability distributions over Si (=i ’s mixed strategies)
▶ σi ∈ ∆(Si ) : a mixed strategy of i
▶ σ,σ−i : analogous
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Normal form

The normal or strategic form of a game is a triplet ⟨N,S,u⟩ specifying the players,
their strategies and payoff functions

The mixed extension of ⟨N,S,u⟩, denoted by ⟨N,Σ,u⟩ with Σ = ∆(S1)× . . .∆(Sn),
explicitly allows the use of mixed strategies, i.e., players can independently randomize
over their pure strategies

Remarks:
▶ Pure strategies are just particular (degenerate) mixed strategies
▶ Often the analysis concerns ⟨N,Σ,u⟩, but only ⟨N,S,u⟩ is mentioned
▶ Utility on S naturally extends to Σ by the assumption of v.N.-M. utilities
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Complete information and common knowledge

Unless otherwise stated, we will consider games of complete information, i.e., we
assume that ⟨N,S,u⟩ and the rationality underlying u are common knowledge

Some fact x is called common knowledge if
▶ everybody knows x ,
▶ everybody knows that everybody knows x ,
▶ everybody knows that everybody knows that everybody knows x ,
▶ etc. ad infinitum

We presume that with any facts x , y , and z players know all the logical implications of
x , y , and z , too
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7.2 Dominant strategies and rationalizability

Question: Which predictions follow from (common knowledge of) rationality?

Strategy σ∗
i ∈ Σi = ∆(Si )

▶ strictly dominates strategy s ′i ∈ Si (or s
′
i is strictly dominated by σ∗

i )
⇔ ∀s−i ∈ S−i : ui (σ

∗
i , s−i ) > ui (s

′
i , s−i ),

i.e., σ∗
i is strictly better than s ′i no matter what (player i believes that) other players do

▶ weakly dominates s ′i (or s
′
i is weakly dominated by σ∗

i )
⇔ ∀s−i ∈ S−i : ui (σ

∗
i , s−i ) ≥ ui (s

′
i , s−i )

∧ ∃s−i ∈ S−i : ui (σ
∗
i , s−i ) > ui (s

′
i , s−i )

i.e., σ∗
i is never worse than s ′i and sometimes strictly better

s∗i is strictly dominant if it strictly dominates all other s ′i ∈ Si

If a strictly dominant strategy exists, rationality dictates its use

For n = 2, a profile σ is consistent with common knowledge of rationality, i.e., is
rationalizable iff all involved si survive iterated elimination of strictly dominated
strategies
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7.3 Nash equilibrium

When many strategy profiles are rationalizable, more specific predictions can be
obtained if players are assumed to have beliefs consistent with each other,
i.e., i ’s beliefs about s−i are correct for every i ∈ N

NB: this is not implied by common knowledge of rationality and the game, but requires
extra motivation!

Strategy profile s∗ = (s∗1 , . . . , s
∗
n) ∈ S is a Nash equilibrium (NE)

⇔ ∀i ∈ N : ∀si ∈ Si : ui (s
∗
i , s

∗
−i ) ≥ ui (si , s

∗
−i ),

i.e., everybody plays a best response1 to (his or her correct beliefs about the) strategy
choices s∗−i of everybody else
[1 There may be others!]
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Remarks

Mixed strategy NE: same for profiles σ∗ ∈ ∆(S1)× . . .×∆(Sn)

A strategy profile s∗ is a strict Nash equilibrium iff it is a NE and above inequality is
strict, i.e., everyone has a unique best response to s∗−i

[NB: a game may have several strict NE]

Why game theorists care about NE so much:
▶ Though NE is not implied by rationality, it is “focal” amongst all rationalizable profiles:

only a NE involves consistent beliefs
▶ If there is any “unique predicted outcome” or a stable social convention for playing a

particular game w/o external coordination, then it must be a NE
▶ If players can talk prior to the game and agree on some profile s without exogenous

commitment or coordination, only NE are self-enforcing
▶ A NE may be viewed as a “steady state” of play where an unspecified dynamic process

has brought about correct expectations;
many learning dynamics or evolutionary processes converge to a NE
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Mixed-strategy NE

Proposition

Consider the mixed extension of finite game ⟨N,S,u⟩:
σ∗ is a NE of ⟨N,Σ,u⟩

⇔ For all i ∈ N, every pure strategy si played with positive probability under σ∗
i

(i.e., any si that is in the support of σ∗
i ) is a best response to σ∗

−i

Proof:
Recall that ui (σ) =

∑
si∈Si σi (si ) · ui (si ,σ−i ).

“⇒” Assume some si in supp(s∗i ) is no best response to σ∗
−i .

Then ui (σ
∗) can be increased by shifting probability from si to some s∗i that is

a best response. � to NE implying “σ∗
i is a best response”

“⇐” Assume σ∗ is no NE, i.e., for some i , σ∗
i is no best response to σ∗

−i while σ′
i is a best

response to σ∗
−i . Hence some s ′i in supp(σ′

i ) gives higher payoff against σ∗
−i than some

si in supp(σ∗
i ). � to the premise above
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Mixed-strategy NE

That truly mixed NE involve indifference reduces their appeal

Defense of mixed NE:
▶ In some games, players try to be unpredictable and mixed NE has empirical support

(penalty kicks, tennis serves, R-S-P game, ...)
▶ In zero-sum games, σ∗

i maximizes i ’s guaranteed expected payoff, i.e., is a “safe” strategy
with minimal knowledge requirements

▶ Probabilities σi in mixed NE may also be interpreted as other players’ subjective beliefs
about i ’s play

▶ A mixed NE may describe a large population where individuals are randomly matched and
play pure strategies in the “right” population proportions

▶ A mixed NE can be viewed as approximating a pure (Bayesian) NE of a game in which
part of players’ payoffs is private knowledge [→purification of mixed NE à la Harsanyi]
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Existence of NE

Games with infinite pure strategy spaces may fail to have any NE

Nash (1950) proved that every finite game has “an equilibrium point” (=mixed NE)
[using Kakutani’s fixed point theorem]

Nash’s existence result can be extended to games with general convex strategy spaces
or to show that symmetric finite games must have at least one symmetric NE
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7.4 Equilibrium selection and refinement

The key “problem” is usually not existence but multiplicity of NE

What would you play in

(a)

1\2 F H

F 7,7 0,0

H 0,0 9,9

? (b)

1\2 F H

F 7,7 8,0

H 0,8 9,9

?

(c)

1\2 f h

F 3,1 0,0

H 2,2 2,2

?

(d) S1 = S2 = [0, 100], ui (si , sj) = si if si + sj = 100 and 0 otherwise?
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Equilibrium selection and refinement

A large literature has tried to build plausibility or robustness considerations into the
equilibrium concept itself

Prominent refinements of NE include:
▶ (trembling-hand) perfect equilibrium

⋆ A NE σ is trembling-hand perfect iff each σi is still optimal against some completely mixed
strategy profiles “nearby”, i.e., each player i wants to stick to σi even if he expects others
to “tremble” and play each of their pure strategies with at least a small positive probability

⋆ This rules out the use of weakly dominated strategies; strict NE and NE involving only
completely mixed strategies are automatically perfect

▶ strictly perfect equilibrium
⋆ As above, but robustness against all, not just some “trembles” is required

▶ essential equilibrium
⋆ Requires robustness against payoff perturbations

NB: there are also helpful generalizations of NE, esp. the notion of a correlated
equilibrium
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Schedule for lectures

# Date Topic Chs. in MWG

1 15.04. Introduction

2 22.04. Preference and choice 1.A–D

3 29.04. Consumer choice 2.A–F

4 06.05. Classical demand theory 3.A–E, G

5 13.05. Aggregate demand 3.I; 4.A–D

6 27.05. Choice under risk 6.A–D, F

7 03.06. Static games of complete information 7.A–E; 8.A–D, F

8 10.06. Dynamic games of complete information 9.A–B; 12. App. A

9 17.06. Games of incomplete information 8.E; 9.C

10 24.06. Competitive markets 10.A–G

11 01.07. Market power 12.A–F

12 08.07. Question session for exam (→ 30.07.24)
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8.1 Game tree

A dynamic or sequential-move or extensive (form) game adds to the information
provided in static games an explicit description of

▶ the timing of players’ actions
▶ the information about play so far on which these actions can be conditioned

We keep the assumption of complete information, i.e., the game (incl. all preferences)
is common knowledge
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8.1 Game tree

Central to the modeling of dynamic games is the concept of a game tree, e.g.

A tree is a particular type of directed graph, with nodes (or vertices) and edges, each
connecting two nodes
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Game tree

Formally, a tree is defined by
▶ a set of nodes N
▶ a transitive and asymmetric (i.e., a ≺ b ⇒ ¬(b ≺ a)) precedence relation ≺ satisfying

the arborescence properties:
⋆ there is a unique initial node n0 ∈ N without predecessor
⋆ if n and n′ precede n′′, then either n ≺ n′ or n′ ≺ n

(in particular, every node except n0 has a unique direct predecessor)

For example,

are no trees
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Game tree

Nodes without successors are called terminal nodes;
all non-terminal nodes are called decision nodes

Given N and ≺ with decision nodes D, a function

ι : D → N ∪ {Nature}

specifies for every decision node which player has to move

The additional player “Nature” is a trick to model chance moves (if needed)

For n ∈ D,A(n) denotes the set of actions available to player ι(n)

Each a ∈ A(n) leads to a different direct successor n′ of n as defined by a function

α(n) : A(n) → Succ(n)

[i.e., each non-initial node n′ is reached from a unique n by a unique action a ∈ A(n)]
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8.2 Information sets

The player ι(n) who has to move at n may not know that the game is currently exactly
at n, e.g., because moves of other players are imperfectly observed

This is reflected by a partition P of D into information sets {n0}, P2, . . . , Pk ∈ P that
capture what players know when moving
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Information sets

Example:

Here:
▶ 1st-moving player 1 (always) knows the entire “empty history”
▶ Player 2 knows 1’s choice when making his first choice
▶ Player 1 does not know whether 2 played up or down;

neither does 2 know if 1 played u or d when making his second choice
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Information partition

The information partition P of D into information sets must satisfy the following
conditions:

▶ the same player ι(n) and action set A(n) are assigned to all n ∈ P j

(so we may simply write ι(P j) and A(P j))
▶ if n ∈ P j , then no successor of n is also contained in P j

Player ι(P j) called to select an action a ∈ A(P j) at a node in P j knows that moves
leading to P i ̸= P j were not played, but doesn’t know which move(s) led into P j if
that’s non-singleton
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8.3 Extensive game

Formally, the collection ⟨N,N,≺, ι, {A(n)}n∈N, {α(n)}n∈N,P⟩ defines an extensive
game form.
An extensive game form together with

▶ v.N.-M. utilities ui over all (lotteries over) terminal nodes for all i ∈ N
▶ a probability distribution ρ(n) on A(n) for each n at which Nature “moves”

define an extensive (form) game Γ .

Remarks:
▶ The definition of a “game form” may include ρ(n), too
▶ Above 9-tuple (or 10-tuple in MWG) is rarely written down:

usually, Γ is “defined” by a diagram or verbal description
▶ We assume that players have perfect recall, i.e., do not forget what they learned at some

stage (→ restricts possible partitions P )
▶ If all information sets are singletons then we speak of a game of perfect information,

otherwise of a game of imperfect information
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Strategies in extensive games

In extensive games, actions (at some information set) need to be clearly distinguished
from strategies;
strategies are complete plans that prescribe an action for every contingency that calls a
player to move

Denoting the set of information sets P such that ι(P) = i by Pi , a (pure) strategy of
player i in an extensive game is a function

si : Pi →
⋃
P∈Pi

A(P)

which maps each of i ’s information sets P ∈ Pi to a feasible action si (P) ∈ A(P)

Histories of play often substitute for information sets in the description of strategies

A player may randomize either over his pure strategies (→ mixed strategy)
or independently over feasible actions at each information set (→ behavior strategy)
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8.4 Backward induction

Extensive games of perfect information can be solved by backward induction if there is
a “last period”, i.e., if every possible history is finite:

▶ One determines optimal choices for the respective last-moving players in all
next-to-terminal nodes

▶ One replaces these decision nodes by the selected terminal nodes (or marks the pertinent
edges appropriately), and then repeats the exercise until the initial node is reached

Every finite game of perfect information has a solution to backward induction;
for “generic” games” – i.e., if no two payoffs are the same – the solution is unique
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8.5 Subgame perfect equilibirum

The idea of players behaving rationally (and others anticipating this) throughout the
entire game (= sequential rationality) can also be applied to games of imperfect
information or without “last period” ...

A subgame Γn of an extensive game Γ is an extensive game starting in a singleton
information set {n} (of Γ), containing exactly all successors of n as its other nodes, not
cutting through any of Γ ’s information sets and inheriting payoffs, information sets,
etc. from Γ

A strategy profile s∗ of Γ is a subgame perfect equilibrium (SPE) iff s∗ induces a NE in
every subgame of Γ

In games with finitely many stages, SPE can be found by a generalization of backward
induction: determine a NE in all “final” subgames, replace these by the respective
payoffs, and repeat until the initial node is reached
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One-deviation principle

Consider a game of perfect information or one where at each stage players move
simultaneously and afterwards observe all actions:

▶ Obviously, s∗ is a SPE only if no player i has a strategy s ′i that differs from s∗i in just one
information set P ∈ Pi and does strictly better than s∗i conditional on P being reached

▶ The reverse is also true and known as the

One-deviation principle:
s∗ is a SPE if no player i has a strategy s ′i that differs from s∗i in just one information
set P ∈ Pi and does strictly better than s∗i conditional on P being reached
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8.6 Finitely repeated games

Suppose that extensive game ΓT consists of T < ∞ iterations of exactly the same
normal form game ⟨N,S,u⟩ and players try to maximize their undiscounted sum of
payoffs

Knowing the NE of Γ , what can we say about SPE of ΓT ?

If stage game Γ has a unique NE s∗ then T -fold play of s∗ independently of the current
history is ΓT ’s unique SPE

If s∗ is any NE of stage game Γ , then T -fold play of s∗ independently of the current
history is a SPE of ΓT

In case of multiple stage game NE, there may also exist other SPE which are
history-dependent and involve play of a stage game NE only in an “end-game” phase
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Infinitely repeated games

Let Γ∞ denote the infinite repetition of normal form game Γ = ⟨N, s,u⟩ in which
players maximize their discounted sum of payoffs
(with common discount factor δ ∈ (0, 1))

A payoff vector x is called strictly individually rational iff for every player i , xi strictly
exceeds i ’s minmax payoff Mi in Γ ,
i.e., the lowest payoff that players −i can impose as punishment on a player i who
correctly anticipates σ−i and best-responds to it

Nash Folk Theorem / Perfect Folk Theorem:
Let x be feasible and strictly individually rational. Then, for δ sufficiently close to 1,
there exists a NE / SPE of Γ with average payoff ∼= x.
(for games with n > 2 players, an additional technical condition related to reward opportunities has to

be satisfied for the Perfect Folk Theorem)
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# Date Topic Chs. in MWG

1 15.04. Introduction

2 22.04. Preference and choice 1.A–D

3 29.04. Consumer choice 2.A–F

4 06.05. Classical demand theory 3.A–E, G

5 13.05. Aggregate demand 3.I; 4.A–D

6 27.05. Choice under risk 6.A–D, F

7 03.06. Static games of complete information 7.A–E; 8.A–D, F

8 10.06. Dynamic games of complete information 9.A–B; 12. App. A

9 17.06. Games of incomplete information 8.E; 9.C

10 24.06. Competitive markets 10.A–G

11 01.07. Market power 12.A–F

12 08.07. Question session for exam (→ 30.07.24)
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9. Games of incomplete information

So far, we assumed that players have complete information about the game;
in particular, every player knows

▶ every other player’s preferences (associated with their rationality)
▶ every other player’s strategy space
▶ every other player’s information partition

What use are NE or SPE, which rest on correct beliefs about others’ behavior in the
game, when there is incomplete information on one of the above aspects, i.e., about
which game is played?
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9.1 Harsanyi’s transformation

John C. Harsanyi (1967/68) proposed a powerful framework for analyzing games of
incomplete information

1 Introduce different types of each player:
⋆ A particular type θi of player i is identified with a particular preference, strategy space and

information partition
⋆ Each player i knows his or her own type θi but possibly not that of other players

2 Introduce Nature as an additional player:
⋆ Nature moves first and assigns each player i his or her type θi ∈ Θi

⋆ Nature’s move is a random draw from an exogenous and commonly known joint probability
distribution ρ on Θ ≡ Θ1 × · · · ×Θn

⋆ Each player i rationally updates the common prior ρ after learning θi

Thus, a game of incomplete information is transformed into an (extensive) game with
complete (but imperfect) information
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Example

Suppose a potential entrant and the incumbent monopolist simultaneously decide
whether to enter and whether to boost capacity, respectively

Cost of a capacity increase is high or low, and private information of the incumbent

Profits are

Incumbent\Entrant enter stay out

invest 0,-1 2,0

don’t invest 2,1 3,0

in case incumbent has high costs

and

Incumbent\Entrant enter stay out

invest 1.5,-1 3.5,0

don’t invest 2,1 3,0

in case incumbent has low costs
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Example

Nature ‘selects’ high costs with probability ρ, i.e., we obtain:
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9.2 Bayesian games

A Bayesian (normal form) game is a collection ⟨N,Θ, ρ,A,u⟩ where
▶ type space Θ ≡ Θ1 × . . .Θn specifies all possible types of players i ∈ N
▶ actual types are drawn from joint probability distribution ρ on Θ
▶ players’ (pure) strategy sets Si are implicitly defined as the set of all functions si : Θi → Ai

which map every possible type θi of player i to an action si (θi ) ∈ Ai

(elements of Ai are strategies in the original game of incomplete information)
▶ ui is defined on A×Θi

We assume that ⟨N,Θ, ρ,A,u⟩ is common knowledge

⇒ Rational players update the prior ρ using Bayes’ rule:

Pr(A |B) = Pr(A ∩ B)

Pr(B)
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Best responses

Comparing two actions ai , a
′
i ∈ Ai , player i with type θi will (in equilibrium: correctly)

anticipate some strategy profile s−i but – in the spirit of players having incomplete
information – must treat other players’ types and hence actions as random variables

So player i ’s type θi compares

Eui (ai , s−i , θi ) ≡
∑

θ−i∈Θ−i

ρ(θ−i | θi ) · ui (ai , s−i (θ−i ), θi )

to Eui (a
′
−i , s−i , θi )

If players use mixed strategies, then ui (a
′
i , s−i (θ−i ), θi ) is simply replaced by expected

payoff ui (a
′
i ,σ−i (θ−i ), θi )

Strategy s∗i of player i (in a Bayesian game) is a best response to s−i iff it specifies an
optimal action s∗i (θi ) ∈ Ai for each type θi that player i might happen to be, i.e.,

∀θi ∈ Θi : ∀a′i ∈ Ai : Eui (s
∗
i (θi ), s−i , θi ) ≥ Eui (a

′
i , s−i , θi )
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9.3 Bayesian Nash equilibrium

A Bayesian Nash equilibrium (BNE) of the game ⟨N,Θ, ρ,A,u⟩ is a strategy profile
s
∗ = (s∗1 , . . . , s

∗
n) such that for each player i ∈ N the strategy s∗i is a best response to

s
∗
−i , i.e.,

∀θi ∈ Θi : ai = s∗i (θi ) ∈ Ai maximizes Eui (ai , s−i , θi )

(with expectation E based on ρ(θ−i | θi ))

A mixed-strategy BNE σ∗ is defined analogously

As in games of complete information, mixed strategy σ∗
i is a best response to σ−i iff

each action ai played with a probability σi (θi )(ai ) > 0 maximizes Eui (ai ,σ−i , θi )

130



Example

Again consider

1h/1l \\2 enter stay out

invest 0/1.5,-1 2/3.5,0

don’t invest 2/2,1 3/3,0

with a specific probability ρ ∈ [0, 1] for firm 1 having high costs

Suppose ρ = 0.5; then
▶ σ∗ = ((1h 7→ don’t invest,1l 7→ don’t invest); enter)

and
▶ every σ∗∗ = ((1h 7→ don’t invest,1l 7→ invest); (q, 1− q)) with q ∈ [0, 1/2]

are BNE
(q refers to probability of enter)
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9.4 Dynamic games of incomplete information

Two complications arise when we apply the Harsanyi transformation to an extensive
game of incomplete information:

1 If θi is private information, −i ’s information sets are never singletons
⇒ there are no proper subgames started by −i ’s moves
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Example
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9.4 Dynamic games of incomplete information

Two complications arise when we apply the Harsanyi transformation to an extensive
game of incomplete information:

1 If θi is private information, −i ’s information sets are never singletons
⇒ there are no proper subgames started by −i ’s moves
⇒ subgame perfection does not restrict −i ’s moves off the NE path
⇒ sequentially irrational behavior can survive (e.g., empty threats)

2 While −i ’s beliefs about θi should be updated after any of i ’s moves ati , Bayes’ rule only
defines the conditional probability ρ(θi | ati ,θ−i ) after moves ati which have positive
probability under strategy profile σ∗
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Example

Consider the following game of complete but imperfect information (not even involving
a move by Nature):

(ENTER, accommodate) and (stay out, fight) are NE and SPE
[because the game itself is its only subgame]

For the incumbent, fight is strictly dominated conditional on being reached;
this makes SPE (stay out, fight) rather implausible

⇒ We need a better formalization of sequential rationality than SPE 135



Strategies and beliefs

More refined equilibrium concepts require optimal behavior in every “continuation
game” starting in some information set, rather than only proper subgames

For player i to be able to identify an optimal action in an arbitrary information set P j

at which she has the move she must
▶ anticipate a particular (mixed) strategy σ−i played by other players
▶ have conditional beliefs µi (· |P j) about which decision node n ∈ P j she is in

(= a probability distribution µi on P j) given that P j was reached

The beliefs held by any player i and the equilibrium strategy profile σ∗ depend on each
other:

▶ each player i ’s strategy σi must maximize expected utility given µi

▶ each belief µi must be consistent with prior ρ and the anticipated strategy σ−i
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9.5 Perfect Bayesian equilibrium

A (weak) Perfect Bayesian (Nash) equilibrium (PBE) of the game Γ = ⟨N,Θ,N,≺,
ι, {A(n)}n∈N, {α(n)}n∈N,P, {ρ(n)},u⟩ is a combination (σ∗,µ∗) of a strategy profile
σ∗ = (σ∗

1, . . . , σ
∗
n) and a system of beliefs µ∗ = (µ∗

1, . . . , µ
∗
n) such that

for each player i ∈ N
1 strategy σ∗

i is “sequentially rational” in the sense that it prescribes a best response to σ∗
−i

in any information set P j ∈ Pi given the beliefs described by µ∗
i , i.e.,

∀θi ∈ Θi : ∀P j ∈ Pi : σ
∗
i (θi ) ∈ ∆(A(P j)) maximizes Eui (·,σ∗

−i , θi |P j)

[expectation E is based on µ∗
i , and i chooses σ∗

i (θi )(ai ) > 0 only if ai max’es Eui (·)]
2 beliefs described by µ∗

i are consistent with σ∗,
i.e., they are derived from σ∗ and Bayes’ rule where that can be applied

[namely, in all information sets which have positive probability under σ∗]

A combination of a strategy profile and a system of beliefs, (σ,µ), is also called an
assessment → a PBE is a sequentially rational and consistent assessment
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Example

Consider

When the incumbent’s information set is reached, sequential rationality requires
accommodate for any belief (µ, 1− µ) about the true history

Anticipating σ∗
2 = accommodate, rationality requires σ∗

1 = ENTER

Anticipating σ∗
1, incumbent must believe that ENTER was played with probability 1

⇒ (σ∗, µ∗) with σ∗ = (ENTER, accommodate) and µ∗ = 1 is the unique PBE
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Remarks

If players use completely mixed strategies in a PBE, every information set is reached
with positive probability and the system of beliefs is well-defined by Bayes’ rule
everywhere

Otherwise, there is no restriction on conditional beliefs in information sets reached only
after a deviation, i.e., the respective player i who has the move is free to interpret j ’s
deviation as, e.g., a fully informative indication of any particular action or type θj , or
as not revealing any information, or ...
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Problematic Example

Consider

(((∅ 7→ Out, In 7→ A), f ), µ = 1) is a PBE:
▶ Anticipating that 1 will stay out, Bayes’ rule doesn’t restrict 2’s beliefs for the

zero-probability event that 2 has to make a move;
2 may think that 1 made another “mistake”, so that µ = 1

▶ Based on µ = 1, fight is indeed optimal for 2
▶ If 1 anticipates that 2 would fight, it is best to choose Out and to Accommodate after

involuntary entry

This implausible beliefs-based PBE isn’t even a SPE:
(A, f ) is no NE of the subgame following In
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9.6 Sequential equilibrium

Kreps and Wilson (1982) proposed to avoid complete arbitrariness of beliefs in
information sets reached with probability zero by requiring existence of some fully
mixed strategy profiles – which reach every information set with positive probability –
that “justify” the beliefs in (σ∗,µ∗)

A sequential equilibrium (SE) of the (mixed extension of) game Γ is an assessment
(σ∗,µ∗)

1 which constitutes a perfect Bayesian equilibrium
2 for which a sequence {σk}k=1,2,... of completely mixed strategy profiles with σk → σ∗

exists such that the sequence of beliefs implied by σk and Bayes’ rule, {µk}k=1,2,...,
converges to µ∗
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Remarks

Every finite game has at least one SE; any SE is a PBE, but the reverse is not true

In games in which only players’ types are private information but all actions are
observed, PBE and SE coincide

▶ if each player has at most two possible types or
▶ if the game has only two periods (e.g., simple signaling games)

NB: The sequence {σk}k=1,2,... need not consist of equilibria;
requiring that the (σk ,µk) form PBEs in “perturbed games” Γk that require positive
probability for all si leads to (trembling-hand) perfect equilibria (PE) in extensive
games, which are a “refinement” of SE introduced by Selten (1975)
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Schedule for lectures

# Date Topic Chs. in MWG

1 15.04. Introduction

2 22.04. Preference and choice 1.A–D

3 29.04. Consumer choice 2.A–F

4 06.05. Classical demand theory 3.A–E, G

5 13.05. Aggregate demand 3.I; 4.A–D

6 27.05. Choice under risk 6.A–D, F

7 03.06. Static games of complete information 7.A–E; 8.A–D, F

8 10.06. Dynamic games of complete information 9.A–B; 12. App. A

9 17.06. Games of incomplete information 8.E; 9.C

10 24.06. Competitive markets 10.A–G

11 01.07. Market power 12.A–F

12 08.07. Question session for exam (→ 30.07.24)
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10. Competitive markets

In a perfectly competitive economy, every relevant good is traded, voluntarily and
without transaction costs, by agents with no market power nor information
asymmetries

A general competitive equilibrium is an allocation and a price vector s.t.
1 all firms’ production and factor demand plans maximize their respective profits,
2 all consumers’ consumption and factor supply plans maximize their respective utility,
3 these plans match, i.e., all markets clear

Properties of competitive equilibria have fundamental importance:
▶ Do market allocations satisfy “minimal quality standards” from a collective point of view?
▶ How do competitive market interaction and social objectives relate?
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Two requirements for market outcomes

A first minimal requirement is that the allocations brought about by the market are
Pareto efficient

NB: Pareto efficiency doesn’t involve any equitability concerns

So, a second ambition is that specific normatively desired allocations somehow can be
brought about by the market, too ...

These issues are addressed for the economy as a whole by general equilibrium theory;
we here restrict attention to a single market which constitutes a small part of the
overall economy, i.e., partial equilibrium
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10.1 Partial equilibrium competitive analysis

Generally, a consumer’s welfare depends on the optimal use of all her endowments
(time, talents, goods, ...), and thus on all prices in the economy

We study a good k on which consumers spend only a small part of their budgets

→ Then it is reasonable to ignore wealth effects and “general equilibrium effects”, e.g., of
a tax on this good on the price of other goods, labor supply, wages, etc.
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Partial equilibrium competitive analysis

Fixed prices for all other goods and no wealth effects can most easily be captured by
assuming quasilinear utility

ui (xi ,mi ) = ϕi (xi ) +mi

for sufficiently rich consumers i = 1, ..., I , where mi captures i ’s expenditure on “other
goods” (treated as a composite numeraire good)

The price of the numeraire is usually normalized to equal 1;
the considered good k has price p
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Optimization by firms

Assuming that consumers have no initial endowment of good k , all consumption has to
be produced by profit-maximizing firms

Firm j ’s transformation of numeraire into good k is captured by cost function cj(qj);
with c ′j > 0 and c ′′j ≥ 0, the necessary and sufficient condition for a solution to

max
qj≥0

p∗ · qj − cj(qj)

is

(I) p∗ ≤ c ′j (q
∗
j ), with equality if q∗j > 0
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Optimization by consumers

Consumer i chooses consumption (xi ,mi ) to solve

max
xi ,mi≥0

ϕi (xi ) +mi

s.t. mi + p∗ · xi ≤ ωmi +
∑

θij · (p∗ · qj − cj(qj))

[ωmi is i´s endowment of the numeraire good, θij is i´s share of firm j´s profits]

Monotonicity of preferences implies that the budget is exhausted, and

max
xi≥0

ϕi (xi ) +
[
ωmi +

∑
θij · (p∗ · qj − cj(qj))

]
− p∗ · xi

calls for
(II) ϕ′

i (x
∗
i ) ≤ p∗, with equality if x∗i > 0

x∗i is unique if we assume that ϕ′′
i (·) < 0
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Competitive equilibrium

Conditions

(I) for all firms j = 1, . . . , J
(II) for all consumers i = 1, . . . , I , and
(III)

∑
x∗i =

∑
q∗i

define a competitive equilibrium (CE)

For quasilinear preferences, sufficiently rich consumers’ shares θij in firms and initial
numeraire endowments play no role in their optimal consumption and production
decisions, (I) and (II), hence for p∗

Market supply and demand for the good are defined by (I) and (II) for arbitrary p

The inverse of the supply function, q−1(·), can be viewed as the industry marginal cost
function C ′(·) [with each next unit produced by the most efficient firm]

Inverse P(x) = x−1(x) of the demand function equals the marginal social benefit of
the next unit of the good if quantity x is distributed efficiently amongst consumers
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10.2 Fundamental Welfare Theorems

For any given consumption and production plans, x and q, and (sufficient) total
endowments ωm of the numeraire, any utility vector in set{

(u1, . . . , uI ) ∈ RI
∣∣ ∑

ui ≤
∑

ϕi (xi ) + ωm −
∑

cj(qj)
}

could be realized by appropriate transfers of the numeraire in this quasilinear case
[because the numeraire has the same constant marginal utility for everyone]

For given x and q, the RHS above is a constant, so the boundary of this utility
possibility set is a hyperplane with normal vector (1, 1, . . . , 1);
variations of x and q imply parallel shifts of it
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Pareto optimal plans

Plans x∗ and q∗ are Pareto-optimal iff they maximize the RHS, i.e., they solve

max
x,q≥0

∑
ϕi (xi ) + ωm −

∑
cj(qj)

s.t.
∑

xi −
∑

qj = 0

Given our convexity assumptions (c ′′j ≥ 0, ϕ′′
i ≤ 0), the maximization of the Lagrangean

L(x1, . . . , xI , q1, . . . , qJ , λ) =
∑

ϕi (xi )−
∑

cj(qj)− λ · (
∑

xi −
∑

qj)

yields the necessary and sufficient conditions (j = 1, . . . , J; i = 1, . . . , I ):

(i) − c ′j (q
∗
j ) +λ ≤ 0 ⇔ λ ≤ c ′j (q

∗
j ), with equality for q∗j > 0

(ii) ϕ′
i (x

∗
i ) −λ ≤ 0 ⇔ ϕ′

i (x
∗
i ) ≤ λ, with equality for x∗i > 0

(iii)
∑

x∗i =
∑

q∗j

These correspond exactly to the conditions (I)–(III) that characterize a competitive
equilibrium, with λ replacing p∗ 152



First Fundamental Welfare Theorem

Hence, if price p∗ and allocation (x∗1 , . . . , x
∗
I , q

∗
1 , . . . , q

∗
J) constitute a CE, then this

allocation is Pareto optimal

This result is also known as the First Fundamental Theorem of Welfare Economics

Good k’s price p∗ in a CE exactly reflects the good’s marginal social value (in units of
the numeraire), i.e., the “shadow price” of the resource constraint:

▶ each firm, in its resp. profit maximization, equates own marginal production cost to the
marginal social value of its output

▶ each consumer consumes up to the point where own marginal utility equals marginal cost
of production (in units of the numeraire)

The theorem vindicates Adam Smith’s “invisible hand” for perfectly competitive
markets, and holds more generally than considered here
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Remarks

Imperfections such as market power, asymmetric information, or market
incompleteness often lead to less cheerful conclusions ...

Nothing is said yet about actual existence of a CE,
or how it might be reached (if at all) by a dynamic adaptation or tâtonnement process
with decentralized information ...

In the quasilinear case, CE price p∗ and individually consumed and produced quantities
of good k do not depend on the distribution of total endowment ωm

[NB: except for corner solutions, in which some agents are too poor to consume both good k and the

numeraire]
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Second Fundamental Welfare Theorem

So, ignoring corner solutions, changing the initial distribution (ωm1 , . . . , ωmI ) changes
individual consumption of the numeraire but not (x∗1 , . . . , x

∗
I , q

∗
1 , . . . , q

∗
J):

one moves within the Pareto efficient hyperplane

For any Pareto optimal levels of utility (u∗1 , . . . , u
∗
I ), there are transfers (T1, . . . ,TI ) of

the numeraire good with
∑

Ti = 0 such that a CE reached from the redistributed
endowments (ωm1 + T1, . . . , ωmI + TI ) yields exactly the utilities (u∗1 , . . . , u

∗
I )

This result is also known as the Second Fundamental Theorem of Welfare Economics

Hence, pursuing a particular distributional goal does not conflict with having
competitive markets: one can achieve the goal by appropriate endowment transfers and
then “let the market work”

This result generalizes, too, but not as much as the First Theorem
[in particular, preferences and technology should rather be convex]
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10.3 Welfare Analysis in Partial Equilibrium

What “yardstick” can we use for comparing different allocations (esp. Pareto-
incomparable ones)?

The value of
∑

ϕi (xi )−
∑

cj(qj) in the maximization problem which characterizes
Pareto efficient allocations is known as the (Marshallian) aggregate surplus

It is an indicator of social welfare under any (increasing) social welfare function
W (u1, ·, uI ) in the quasilinear case:

▶ greater surplus implies a larger utility possibility set
▶ the planner can select a utility vector with a greater (maximized) W -value through

appropriate endowment transfers

Aggregate surplus can be derived very simply from market demand and supply
functions; it is thus a convenient tool and used in many applications
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Aggregate surplus and CE
Start from (possibly non-CE) total consumption and production x =

∑
xi =

∑
qj = q

Increases by (∆x1, . . . ,∆xI ) and (∆q1, . . . ,∆qI ) s.t.
∑

∆xi =
∑

∆qj ≡ ∆x > 0
change surplus by

∆S ≈
∑

ϕ′
i (xi ) ·∆xi −

∑
c ′j (qj) ·∆qj

For given x , the planner maximizes surplus by allocating consumption and production
s.t. ϕ′

i (xi ) = P(x) and c ′j (qj) = C ′(x) for all i , j

Then ∆S ≈ [P(x)− C ′(x)] ·∆x or dS/dx = P(x)− C ′(x) for marginal changes

So aggregate surplus under an optimal distribution of output x is

S(x) = S(0) +

∫ x

0
[P(s)− C ′(s)]ds

S(0) reflects fixed costs; S(x)− S(0) is the area between demand and supply curves

S(x) increases up to x∗ s.t. P(x∗) = C ′(x∗), i.e., the CE level

⇒ Surplus is maximal in the undistorted laissez-faire CE
[but given one distortion, adding another may raise surplus...]
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1 15.04. Introduction
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12 08.07. Question session for exam (→ 30.07.24)
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11. Market power

Price-taking behavior is implausible if there are only a few producers (or consumers)

Several “workhorse” models of industrial organization capture the performance
differences that market power can cause
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11.1 Monopoly

A first benchmark is an uncontested monopolist who can
▶ produce quantity x of a good at cost C (x), and
▶ sell it at a constant unit price p to consumers, whose demand is described by demand

function D(p)

The monopolist maximizes Π(p) = p · D(p)− C (D(p))

The necessary condition for an interior profit maximum is

[p − C ′(D(p))] · D ′(p) = −D(p)

⇔ [p − C ′(D(p))]

p
=

−D(p)

[D ′(p) · p]
=

1

|ε|

⇒ In the monopolist’s profit maximum, the price-cost margin [pm − C ′]/pm

(also known as Lerner index) equals the inverse of the (absolute) price elasticity
|ε| = −D ′(pm) · pm/D(pm)
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Deadweight loss of monopoly

Except for perfectly elastic demand(“|ε| = ∞”), pm > C ′(D(pm)) and quantity
xm = D(pm) is smaller than x∗ in the CE

A quantity x < x∗ results in an inefficient allocation and entails a deadweight (welfare)
loss: surplus which could be generated by further trade is left unrealized

▶ Having sold D(pm) units at price pm, the monopolist would gain from selling additional
units at any price p with C ′(D(p)) < p < pm

▶ All consumers with willingness to pay v satisfying p < v < pm would gain from buying
these additional units
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11.2 Bertrand competition

The Bertrand duopoly model considers
▶ two firms i ∈ {1, 2} that simultaneously announce their respective price pi for a

homogenous good, which – in the baseline case – can be produced at identical constant
marginal cost c without capacity constraints, and

▶ consumers that buy only at the cheaper firm if p1 ̸= p2, and otherwise split demand D(p)
with D ′(p) < 0 equally between firms 1 and 2

If prices are discrete (e.g., multiples of a currency unit ε), firm i ’s best responses Ri (·)
to prices pj ∈ {c , c + ε, . . . , pm − ε, pm} are

▶ Ri (pj) = {pj − ε} for pj > c + ε
▶ Ri (pj) = {c + ε} for pj = c + ε
▶ Ri (pj) = {pi : pi ≥ c} for pj = c
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NE in the discrete Bertrand game

The discrete Bertrand game has two NE:
▶ (p∗1 , p

∗
2 ) = (c , c)

▶ (p∗∗1 , p∗∗2 ) = (c + ε, c + ε)
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Bertrand paradox

If p1 and p2 may be chosen from [0,∞), then (pb1 , p
b
2 ) = (c , c) is the unique NE

→ The “Bertrand Paradox”:
Price competition between two symmetric firms with CRS results in the same market
outcome as perfect competition, namely p∗ = c

Asymmetric case:
▶ If firm j has a non-drastic cost advantage over its competitors, it supplies the entire

market at price pbj = mink ̸=j ck (or ε below)
▶ For a drastic advantage, it chooses pbj = pmj < mink ̸=j ck

Even symmetric firms can avoid the paradox
▶ if technology commits them not to undercut their rival for some p > c

(e.g., for capacity constraints)
▶ if they differentiate their products, i.e., make them imperfect substitutes
▶ if they collude
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11.3 Edgeworth competition

Consider price competition with exogenous capacities q1, q2 < D(c), i.e., a single firm
cannot serve the whole market at p∗ = c

If firm i ‘s capacity qi is already exhausted for pi = pj , it will not undercut firm j

If capacities q1 and q2 are “small” (namely, ≤ xci given by Cournot NE), equilibrium
prices pe1 = pe2 = pe are defined by D(pe) = q1 + q2:

▶ Unilateral undercutting of pe is unprofitable because the firm’s capacity is already
exhausted

▶ A unilateral increase of pe (i.e., selling below capacity) is unprofitable if outputs are
“small” and profit margins high already

165



11.4 Cournot competition

The Cournot duopoly model considers two firms j ∈ {1, 2} that
▶ simultaneously produce a respective output xj of a homogenous good at cost Cj(xj), and
▶ sell at market clearing price p = P(x1 + x2), i.e., such that D(p) = x1 + x2

The Cournot game can be interpreted as the reduced form of a two-stage extensive
game in which

▶ first, firms invest in capacities xj , incurring costs Cj(xj) for this
▶ second, they engage in Edgeworth competition with fixed capacities qj = xj and zero

costs of production

We assume that no firm has a drastic cost advantage: costs are sufficiently similar that
both firms want to produce in equilibrium
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Reaction function of firm i

Firm i maximizes
Πi (xi , xj) = P(xi + xj) · xi − Ci (xi )

Best response x∗i = Ri (xj) to the anticipated competitor output xj is defined by

P(xi + xj) + P ′(xi + xj) · xi = C ′
i (xi )

For xj = 0, i should behave like a monopolist, i.e., Ri (0) = xmi
If the competitor already produces the CE quantity xj = x∗, it is optimal not to
produce, i.e., Ri (x

∗) = 0

Under standard assumptions – i.e., P ′′(x) ≤ 0 and C ′′
i (xi ) ≥ 0 – the reaction function

Ri (xj) is strictly decreasing on (0, x∗)

This means firms’ quantity decisions are strategic substitutes:
firm i reacts to a larger output xj with a reduction of own output xi
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Nash equilibrium in the Cournot game

Symmetric case:
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n-firm Cournot game

With xΣ =
∑

xi , the NE xc = (xc1 , . . . , x
c
n ) of Cournot competition between n firms is

characterized by:

P(xΣ) + P ′(xΣ) · xi = C ′
i (xi ) for i ∈ {1, . . . , n}

or, expressed in market shares si = xi/xΣ and with pc = P(xcΣ),

[pc − C ′
i (x

c
i )]

pc
=

si
|ε(pc)|

So, in the Cournot NE, the Lerner index (≈ profitability, market power) of firm i is
proportional to its market share si ;
unequal market shares derive from technology differences

For symmetric firms: si = 1/n and mark-up ratio 1/[n · |ε(pc)|] approaches 0 as n → ∞
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11.5 Product differentiation

The Hotelling duopoly model describes “horizontal” product differentiation with
▶ a continuum of consumers who want to buy at most one unit of a differentiated good

regarding which they have uniformly distributed ideal points in a one-dimensional product
space X = [0, 1], and

▶ firms 1 and 2 who are – in the baseline case – located at the extremes of X , and
simultaneously announce prices p1 and p2 for the good produced at constant marginal
cost c

Let consumers suffer from quadratic disutility of distance, tx2 or t(1− x)2 for t > 0,
and each have sufficiently high valuation for one unit of the good
⇒ each one buys from the firm for which price plus “transportation cost” is minimal
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Hotelling model with fixed locations

The consumer at location x buys from 1 if p1 + tx2 ≤ p2 + t(1− x)2, otherwise from 2

⇒ Firm 1 faces demand D1(p1, p2) = (p2 − p1 + t)/2t,
firm 2 faces D2(p1, p2) = 1− D1(p1, p2)

Maximization of Πi (p1, p2) = (pi − c) · Di (p1, p2) yields reaction functions
Ri (pj) = 1/2 · (pj + c + t)
(NB: firms’ prices are strategic complements)

⇒ Nash equilibrium: p∗1 = p∗2 = c + t

Profits Πi (p
∗
1 , p2∗) = t/2 are positive;

they increase in differentiation parameter t > 0
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11.6 Collusive behavior

Collusion refers to anti-competitive coordination of firms’ prices, quantities, etc. in
markets where cartel agreements cannot be enforced in court

Firms’ always have an interest in full coordination:
they could duplicate the non-cooperative outcome;
not doing so reveals that they strictly increase profits ...

Such coordination is, however, not self-enforcing if firms interact only once, or over a
definite time-horizon

If firms interact repeatedly over an in(de)finite time horizon, collusion can be
supported by strategies that involve credible punishment of free-riding deviators
(provided that a deviator’s forgone long-term collusion rents are important enough relative to

short-term gains from deviation → #8: Folk Theorems)
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Collusion in the symmetric CRS Bertrand oligopoly

In the symmetric Bertrand n-firm oligopoly with CRS, a firm‘s per-period profit is

Π∗ ≈ 0 if all firms compete,

Πk =
Πm

n
if all firms collude, and

Πd ≈ Πm if the firm deviates

Collusion can be realized by an SPE in Nash reversion strategies iff firms discount
future profits by a factor δ that is no smaller than the critical discount factor

δbcrit =
Πd − Πk

Πd − Π∗ =
(n − 1)

n

The critical discount factor increases in n, and converges to 1
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